04 Aug

Managing Static and ESD in Call Centers

Managing Static and ESD in Call Centers

Thanks to movies and TV, no matter how old you are, you’ve probably seen the old switchboards – whether it’s on Agent Carter or reruns of the Andy Griffith Show – and computers  that barely fit inside a room – like in The Imitation Game or the TV show Manhattan.

Nowadays, of course, we carry the switchboard and the computer in a handy-dandy pocket device.

Likewise with emergency services. When we call 9-11, we expect a prompt response, and the person on the other end of the line assures us that police, fire, or ambulance are already in route as they continue to gather our information.

Computers help planes land, monitor traffic on the freeways, and even park your car for you.

But for all the advances in technology, there have been setbacks as well.

In the old days, phone and computer systems were built “solid-state.” Everything was confined within one unit and was protected from outside forces. Internally, they were defended from ElectroStatic Discharge (ESD) by microcircuit gate protectors.

Unfortunately, these gate protectors, while highly effective, tended to slow down the machines they were protecting – kind of like how some companies’ virus protection forces their machines to crawl.

As technology progressed, emergency services, military bases, and flight control centers started abandoning these more stringent preventative measures, in favor of speed.

The end result being, while these computers and call centers are protected in buildings made to withstand hurricanes, earthquakes and power outages, they can be disabled or even rendered completely useless by the tiniest static shock.

Which is why the proper ESD protection and protocols are so important in these mission critical locations.

Another factor to consider is that these facilities are typically open 24-hours a day and have hundreds of people pass through them on a regular basis. Some of them are trained and properly equipped with ESD shoes, heel grounders and even personal wrist straps, but certainly not all of them.

And when there’s a crisis and everyone needs to scramble to get the problem solved, the first thing to go is proper ESD procedures.

The answer is to make these facilities as static proof (or charge proof) as possible.

Like your skin (the largest organ in the human body), flooring is the largest and most vulnerable area for ESD buildup and discharge, if it’s not handled properly.

There are many options for ESD flooring, as we’ve discussed in prior posts, but in this instance, there are really only one option: carbon-fiber laced carpet.

The first thing you should know is that not all ESD carpet is created equal. Some companies promote and sell an ESD carpeting that is treated with a chemical to reduce static that disintegrates over time and must be reapplied.

Avoid these – you don’t want your static protection to be subject to a random timetable. Again, these facilities are always open. You’ll want to invest in a carpet whose static-prevention comes from the permanent physical composition of the materials.

For the same reason, you’ll want to invest in an ESD carpeting that is certified by ANSI/ESDA standards and reduces static regardless of the humidity levels or footwear worn by the personnel.

As an added bonus look for ESD carpet that is low maintenance, crush resistant, able to handle heavy foot traffic and comes with a lifetime warranty.

Contact us today for more information or to talk about your ESD flooring options.  We would love to be your full service, seamless ESD solution provider.

28 Jul

5 Reasons Why Static Programs Fail

Why Static Programs Fail

On May 6, 1937, the German passenger airship LZ 129 Hindenburg caught fire and was destroyed, killing 36 people in front of national news cameras and effectively ending the Zeppelin flying experiment.

The Hindenburg was larger than 4 Goodyear blimps combined, or about as long as 2/3 the height of the Empire State Building.

It was rainy that day, and the mooring ropes dragged along the ground as the airship came down to dock in Manchester Township. The prevailing theory is that the wet dragging ropes generated a static charge that traveled up them onto the ship.

There the charge ignited the Hydrogen fuel and… boom. Once considered the future of air travel, flying airships would not be utilized, either commercially or for military use until the end of World War II.

All caused by a single spark.

Much like the Hindenburg disaster, your company’s program to control electrostatic discharge (ESD) can be toppled with a few small errors that blossom into larger problems if they aren’t properly accounted and planned for.

So today, let’s look at the 5 common reasons why your static control programs could fail.

Sure! We have ESD Protocols, Right?

Most companies that deal with sensitive electronics and circuit boards also require that their vendors, third party suppliers, and subcontractors have an ESD program in place. Often even before signing a contract, an engineer is sent in to audit the ESD practices. And from time to time they will do spot-checks to verify that those practices are still in place.

Some companies, in an effort to hold on to their contract or cut expenses, will simply throw together a minimum program that can be audited. It’s done as inexpensively as possible and often doesn’t have any true protocols – training, preventative maintenance, and enforcement fall by the wayside.

You’d never do that, right? Well, except…

This is Gonna Cost How Much?

Top management are always looking at ways to work more economically. Unfortunately, if they are not properly briefed on the importance of proper ESD protection protocols, they may see many aspects of the ESD program as expensive and possibly unnecessary.

This isn’t their fault, they just need to be better educated. Which may be your job. The fact is, the expense for good, well-developed ESD protection protocols is dwarfed by the cost to replace or repair non-functioning components, not to mention the company’s reputation.

Excellent ESD companies are led from the top down, with company leadership not only showing financial support for ESD preventative programs, but also making time to attend training themselves, praise persons and departments with the best implementation, and allocate time and funds for ongoing training and improvement of existing programs.

Otherwise, you might end up in a pinch…

Here’s a Band-Aid for that Severed Limb!

You might have heard the old saw, ‘if there’s no time to do it right the first time, how are you going to find time to fix it later?’

Unfortunately, many companies appear to follow a different maxim – there’ll always be time to do it over.

Like our last reason, the problem is often financial. Momentary solutions that can be quickly applied to fix individual problems becomes the norm, despite the fact that the long term expense is much higher.

The best, most cost-effective solutions are applied right the first time and “solve” lots of problems by the fact that they prevent so many of them for happening. Then you don’t get into a situation where you’re spending a lot more to fix what could have been an easily avoided minor problem, but is now mission critical.

But that’s not going to help unless…

Training?  We Don’t Need no Stinking Training!

Proper ESD prevention is a team effort, but many companies underestimate the size of the team involved. As mentioned before, upper level management should take an interest in training, and in fact, every employee should be given at least a rudimentary class or video in how to follow the company’s practices.

It’s not enough to train the engineers of you haven’t informed the janitorial staff that cleans their sensitive work areas after they leave for the day how to properly do so.

Secretaries, interns, sales people – everyone who has the potential to walk into or affect an Electrostatic Protection Area (EPA) needs to know how to properly behave to minimize risk.

And finally…

We Only Use the Best – the Best We Can Afford, That Is.

Yes, it keeps coming back to price. But price should not be the only factor in deciding who to buy your ESD supplies from. Not all companies are created equally. Not all ESD products are held to the highest standard.

You want to find a vendor that can supply your ESD needs who can guarantee all of their products are properly tested, meet or exceed industry standards, and have the certification to prove it.

Always be sure to properly vet your chosen vendor, making sure they meet these requirements and be willing to ask for clients you can speak to and recommendations you can verify. If they’re reputable, they’ll be more than willing to have you check them out with their existing happy clients.

ESD prevention is no casual task. Your company may not have the risk of ending 36 lives, but putting best practices into place can certainly save jobs, computers and your clients.

We’d love to be the experts you can count on for your full service, seamless ESD solutions. For more information or advice on your specific ESD prevention needs – or any other ESD questions, please contact us today.

21 Jul

Can New Flooring Be Installed Over Old?

Can New Flooring be installed over Old Flooring?

Whether your company has just invested in a new to them facility or is upgrading their current locations due to time or elevated ANSI/ESD standards, one of the largest expenses they will face is replacing the existing flooring.

Based on the existing installation, this can be a very time consuming task – days to strip off the old flooring, etch or acid burn off any leftover adhesive residue.  Plus the very real possibility of damaging the concrete itself or a pre-existing moisture barrier.

Which leads to a popular question from facility and production managers – can new ESD flooring be installed over existing flooring?

And depending on who you talk to, the answer is: Yes. No. And, of course, Maybe.

Yes.

If an existing floor is well-bonded, ANSI/ESD 20.20 compliant and in reasonably good condition, theoretically, the answer is yes.

Certain flooring options pose a lower risk and are considerably easier to install over an older floor. Vinyl, for example, generally can be installed over top existing vinyl. Generally.

Problems arise when the old floor has become hard and stiff.  It may be harder to install over it, and if the initial bond doesn’t take, vinyl is unforgiving and may delaminate – requiring a complete stripping and reinstallation that is likely to cost more than the initial money saved, not to mention the time lost during the removal and reinstallation.

An additional choice to consider is installing carpet tiles over old vinyl. Carpet has become a popular choice to install over existing floors because the irregularities of the surface below the carpeting are virtually hidden behind its barely reflective surface.

Another option is Zero Stat Crete – a state of the art water-based epoxy coating – which can, after proper testing, be applied over an area that has had the previous vinyl or carpeting tile removed – often without needing to strip off any leftover adhesive.

No.

Some experts caution that you should NEVER install a new floor covering over an old one. Along with the warnings above, the old flooring might hide structural defects, might not be properly bonded or might result in a plasticizer contamination of the new flooring, which could radically affect the quality and effectiveness of its ESD prevention.

Also, by not removing the old flooring, moisture concerns that need to be addressed may not be discovered.

Additionally, depending on the age of the old flooring, it might have been made with asbestos, a manufacturing material that causes severe respiratory problems and may lead to death.

Maybe.

Experts say that almost any floor can be installed over an old floor as long as the old floor is in good condition and well-bonded to the sub floor. BUT…

There are just too many variables to accurately consider or discuss every flooring replacement or recovering option in a single posting.

Even if your scenario is similar one of the ones we’ve elucidated above, there may be additional factors in your specific facility that are not taken into account in our hypothetical illustrations.

Which is why we always recommend speaking to a qualified flooring professional before making any final decisions. There is not usually a financial cost associated with their consultation and/or site visit, but the preventative savings far outweigh any nominal up front cost.

For a free consultation – or any other questions you may have, please contact us.  We would love to be your full service, seamless ESD solution provider!

14 Jul

Monitors & Meters: Which One Do You Need?

ESD Monitors and Meters

Monitors and meters may seem like merely a question of semantics. And in most of the world it is, monitors are analogous with meters and vice versa.

But when you’re dealing with electrostatic discharge (ESD) prevention, both have specific purposes and uses that set them apart from one another. And it’s important you know which is which before you start or continue your work with items that can be harmed by ESD.

Monitor: What’s Happening in the Room?

In plain language, in an ESD Prevention situation, the Monitor (noun) keeps known sources of ESD in systematic reviews. It monitors (verb), the ‘progress’ or quality of ESD buildup over a period of time.

So we have monitors for people, that connect to their personal wrist straps, or connect between them and the ESD matting that they are using – in effect, monitoring both.

The key to a good ESD monitor is make sure they provide constant monitoring of the potential ESD in the room.  If the monitor fails, a single spark of static electricity can cost hundreds of dollars in damage before it’s quelled.

Meter: Where Is It?

Meters, in an ESD prevention situation, operate more as the means to locate the sources of ESD build up.

Much like the meters used for testing in construction situations, meters will show the relative ESD levels, allowing the user to pinpoint the exact spot where ESD is being generated or not dispersed properly.

This can be on ESD mats, clothing, people and flooring.

Specialty meters can detect and pinpoint ESD specifically in a cleanroom or ionized area.

There are meters that look at a wide variety of potential ESD buildups and smaller units that check select areas only. And meters that check the humidity, temperature, electrical resistance, and any or all of these at once.

There is a secondary subset of meters that you should also be aware of – Testers.

Testers check the grounding of electrical receptacles to ensure they are actually grounded. Imagine the problems and expense of not realizing your electrical plugs were not grounded and subsequently having to discard or repair any sensitive electronics that had been worked on or assembled during the time the ground was inactive.

There are also testers for personal wrist straps and grounding cords.

Are You ESD Aware?

So, the answer to our question above is YES.

It’s not an either/or situation. It’s both. Each tool has its purpose within your ESD control situation, and both are effective in their job – which is generating awareness of ESD.

We would love to be your full service, seamless ESD solution provider; contact us today for more information.

07 Jul

Is Bare Concrete Really the Best “Anti-Static” Flooring?

Is Concrete Really Anti-Static?

There used to be an old wives’ tale that standing on bare concrete for too long caused varicose and spider veins.  In the 60’s, that idea was largely supplanted by the hippie movement that believed standing shoeless on bare concrete allowed the body to become more grounded.

Unfortunately, it seems that the once-held hippie belief has permeated into the world of electrostatic discharge (ESD) prevention.  But nothing could be further from the truth. Because while bare, unsealed concrete floors that are allowed to ‘breathe’ have anti-static tendencies, they are definitely NOT grounded.

Nothing to Cling To

While the lower expense of a bare concrete floor makes it appear like a desirable remedy, there are several reasons it is not classified as a true ESD flooring solution.

First there’s that word – tendencies. Bare concrete floors tend to be anti-static, but they are not reliably so. That’s because anti-static characteristics are not inherent in concrete like they are in a carbon-filled material or a poured ESD epoxy.

To further complicate the issue, the measure of how anti-static concrete is, is dependent on many variables – the most significant of which is its permeability to moisture. If you’ve explored our website at all, that should immediately raise a red flag.  In an earlier post, we talked about why moisture is the #1 enemy to your ESD flooring.

A Shift in Standards

If that doesn’t scare you away, we discussed in this post about how anti-static is not an adequate measure for ESD flooring. To summarize, the term “anti-static” refers to a material that resists generating a charge. And bare, sealed concrete does do that – most of the time. But over the past 30 years or so, ANSI and the ESD Association made the effort to remove the term from their professional industry standards because it was so overused and misunderstood.

Those standards are discussed in this post.

And for good measure, we discuss in another post the dangers of cutting corners to save money when building your ESD Protection Area (EPA). Some up front expenses are definitely worth the long-term benefits.

Fully Charged

So, let’s assume that the concrete floor you’ve just installed is as anti-static as it can get. You can walk across it to any other part of the room and there will be no static buildup, aka triboelectric effect.

But what happens when the CEO comes down to inspect the area, and as he’s walked from his office to the EPA area, he’s built up a static charge. It’s on his body, on his clothes; we know that even the slightest movement in a conductive area builds a charge that can damage sensitive electronics.

When he hits that concrete floor, the charge doesn’t just disappear. It stays with him. Because while concrete has the tendency to avoid building up a static charge, it does nothing to dissipate an existing charge. And this is the biggest problem with the use of concrete as an ESD floor. It cannot act as a ground.

The CEO touches a circuit board, it gets the electrostatic discharge, ruining it – and he blames you. And then you have to install a true ESD floor anyways. Why not just do it right the first time?

We would love to be your full service, seamless ESD solution provider.  Contact us today for more information.

29 Jun

Custom Matting: A Ground Zero Specialty

Custom Matting-A Ground Zero Specialty

If you’ve ever worked with an X-Acto Knife or a box cutter, you know there are some dangers, just as there are with any knife. Remember, pay attention to what you’re doing! Never use a dull blade! Cut away from your body!

And of course, wear cut resistant gloves. Yes, we know you’re a man, and men don’t need certain protections… Okay, so both genders have their issues, but this one rule is the one we most often neglect – and that neglect leads to injuries.

You’re being careful, cutting along, everything’s going smoothly and SLICE!

Yes, that’s right, you’ve just sliced open your finger, there’s blood everywhere – you have to go to the emergency room and get stitches.

It kind of ruins your day.

OSHA reports that nearly 40 percent of all injuries attributed to manual workshop tools in the US involve knives with retractable blades.

And according to the Bureau of Labor Statistics, around 250,000 serious hand, finger and wrist laceration occur annually in the private industry.

So that scenario we described above?  It’s far more common than you might think. And, in the interest of your safety and our bottom line, we took action.

A Cut Above

So what did Ground Zero do to help insure your workplace safety?

In an earlier post, we talked about ESD mats – what they are and how they work, but today we’d like to get… a little personal, if that’s okay with you.

Most table and bench mats are built with either two or three layers. The top layer is resistant to chemicals, solder and flux, making it usable and easy to clean. The bottom layer is either a durable anti-skid surface and/or an adhesive backing, both to ensure safety on the work area.

Three-layer mats have the added bonus of a conductive scrim layered in the center that can coordinate with your personal wrist-strap constant monitors.

As you can imagine, all of these layers make the mats a little thicker than cardboard or just a vinyl mat. And, as you know, when cutting with an X-Acto knife or box cutter, the thicker the material you’re trying to cut is, the more prone the blade is to slipping, leading to that ER visit.

So to help promote the safety of our customers’ workplaces, we decided to offer custom cut matting.

That’s right, any of the mats we sell can be custom cut to your specifications (with a small margin of +/-1/8th of an inch). Plus, each and every custom cut mat comes with an ISO certification showing it has been tested and met the latest professional standards.

So which would you prefer, a trip to the emergency room, or the ability to get to work on with your new ESD mat right out of the box – with all of your fingers intact?

Oh, and finally: a little safety advice, whether you want it or not. When using a knife or blade of any sort, stay sharp! Follow all of those rules we mentioned above, ‘cause we all know a lot of us do ignore them and they were created for our safety.

We would love to be your full service, seamless ESD solution provider; contact us today for more information

22 Jun

Are You Grounded: A Look at Cables, Clamps, and Drums

A closer look at cables, clamps, and drums

Do you remember the cell phone gas fire scares of the early 2000’s? Because of a couple of erroneously spread Internet rumors, people all across the world became convinced that use of their cell phones while at the gas pump could lead to explosions, injuries, even death!

Despite the fact that the rumors were all proven to be false, several gas station chains, including the one whose safety report was misquoted to create the rumors, posted stickers warning against cell phone use. One Chicago suburb even passed a law banning the use of cell phones at gas stations.

If you look closely, those stickers are still on a majority of gas pumps, at least in the US and Canada. But while there has never been a case where cell phones caused gas fires, the same is NOT true for static electricity.

We’ve talked a lot in the past about the danger even a small electroStatic discharge (ESD) can pose to sensitive electronics. But in a combustible atmosphere, that tiny spark can cause a lot more damage than the cost of replacing a damaged circuit board.

Static is Everywhere

Walking across a room, rustling your clothing, even just the act of raising your arm to scratch your nose can generate a sufficient static buildup to create a subsequent ESD if not dissipated. Under normal conditions, you won’t even notice the buildup until you feel the shock of the discharge being released.

When you’re not working with sensitive electronics, you probably don’t even consider this to be a problem, certainly not in your home or driving in your car. But like all charges, if it’s not given a route to ground, the charge continues to build, increasing the voltage. And if you happen to be in an area with flammable liquids, vapors and even dust, that static charge can cause explosive consequences.

The first step to avoid incidents in any environment conducive to these volatile exposures is to eliminate as many potential ignition sources as possible. But there are often unconsidered, hidden dangers, especially in an industrial setting that can act as accidental ignition switches.

Isolated Conductors = Hidden Dangers

Isolated conductors are conductive objects – metal flanges, fittings or valves in pipework systems, portable drums – which are either inherently or accidentally insulated from being grounded. Because of this, any static charge they generate becomes a potential ignition point.

The best way to avoid this problem is by utilizing bonding and grounding. Bonding is the process of joining two or more objects or containers with electrically conductive wires to neutralize the potential charge between them.  Grounding is a more specific form of bonding where an object or container is connected to the ground.

There are a variety of ways to effectively employ bonding and grounding. While OSHA does not give clear directives on how to ground, they do specify when and where grounding as well as bonding procedures should exist.

Getting Grounded

The most obvious example to point to is the common ground, seen in every building – a metal rod is attached to the outside of a building and literally grounded a few inches into the soil. While this method works great for homes, the size of large industrial expanses, such as warehouses or factory floors, means other methods may be more suitable.

For manufacturing or large storage areas, there are a few options. They all involve grounding clamps connected to grounding cables.

If the area has access to the building’s main cold water pipe, a very common semi-permanent solution is to use a bronze pipe clamp as an alternative to the direct building ground. C-Grounding clamps are another popular semi-permanent solution. Of course, always check the reliability of the ground conductivity in these instances.

If you’re like many industrial complexes, though, the isolated conductors are often temporary items, like drums, containers and vessels that come and go as needed. For these instances, you can get a variety of steel- or aluminum-constructed clamps that attach to the container, connecting it through a stainless steel cable to a grounding point, making the drum or vessel safe.

Depending on the environment, you can also effectively ground using the drop valve of a mixing tank or connecting your ground cable to a previously grounded surface – a table or workstation that is already connected to the grounding apparatus.

Whatever method you choose, bonding and grounding are essential for the safety of everyone working in an industrial environment, whether they’re piecing together circuit boards, helicopters… or gas pumps.

We would love to be your full service, seamless ESD solution provider; contact us today for more information.

15 Jun

Conductive, Dissipative, or Anti-Static Flooring?

Conductive, Dissipative, or Anti-Static Flooring

You’re hard at work at your latest assignment. Your boss wants you to put together a complete plan for creating a large-scale electrostatic protection area (EPA) for a client who will be assembling various sensitive electronics and they want to avoid any risk of losing their investment due to electrostatic discharge (ESD).

You’ve selected the grounding cables, the workstations, the custom cut matting, containers and furniture, all designed to minimize or eliminate the slightest chance of ESD damage. But a curious thing happens when you research the proper flooring.

A simple Internet search for ESD flooring yields numerous options, more than you expect and you start to notice they all fall under 3 categories.  In an instant, you’re faced with a decision, just like the game show, “Let’s Make a Deal.”

Suddenly, Monty Hall (or Wayne Brady, the current host!) is staring at you, asking do you want to choose door number one, number two, or number three: conductive, dissipative, or anti-static? The clock is ticking… How do you decide?

Door #1

For starters, let’s eliminate one of your options. Much like the ‘ZONKS’ of the game show, ‘anti-static’ is a worthless term in your ESD vocabulary.  By strict definition, anti-static refers to a material that resists generating a charge.  At one time it did designate a level of resistance, but was so overused and misunderstood, the term was removed from the ANSI/ESD standards.

So likewise, eliminate the term ‘anti-static’ from your discussion.

Deciding between the other two doors requires a closer look at the specific needs of the area for which the flooring is intended.

We’ve talked in another article about Ohms (Ω) and how they are the unit of measurement for resistance to electrical current.

Door #2

Because of the size and scope of most areas where it is necessary, the most common form of ESD flooring is referred to as ‘Static Conductive.’ Conductive flooring is at the low end of the electrical resistance scale.

Conductive carpeting may even be laced with carbon lines or metallic yarn fibers to encourage the flow of electricity. Because of the low electrical resistance, electrons flow easily across and through the surface, and can be grounded safely and quickly. This carpeting or vinyl tile is laid down with a conductive adhesive and grounded through the use of conductive tape or copper strips that run to a common ground.

This type of flooring is also generally a little more cost-effective than a dissipative solution.

Door #3

On the higher end of the resistance scale falls ‘Static Dissipative’ flooring. The higher resistance of these materials keeps the electrical charge more under control as it slowly flows over the surface and into a ground. Dissipative flooring is much more common in shared office environments where everyday shoes are more common, as opposed to a location where every element, from furniture to footwear, is controlled.

In our example above, the client will be assembling sensitive electronics like circuit boards and such in a large-scale environment. In this instance, a vinyl tile, or a poured epoxy flooring with conductive properties would most likely be the best option.

In an office setting where a company has their own IT department that fixes and assembles computers within the same facility, a dissipative, static resilient tiled floor would be a better fit.

But the fact is, these are very simplified examples of the myriad of variables that you can encounter when selecting the proper ESD controlled flooring. Your best option is to talk to an expert.

We’d love to be the experts you can count on for your full service, seamless ESD solutions. For more information or advice on your specific ESD flooring needs – or any other ESD questions, contact us today.

08 Jun

Edison vs Tesla: The Battle for Electric Power–Part 2

The battle of Edison vs Tesla

So, what exactly changed on May 1, 1893?

Lighting up Chicago

Westinghouse had managed to win the bid to illuminate the Chicago World’s Fair, the first all-electric fair in history. The previous year, financier JP Morgan had facilitated the merger of Thomas Edison’s various companies into the General Electric Corporation. GE also bid on the World’s Fair, but lost out because of the high cost of laying copper wire to accommodate DC power transmission.

27-million people witnessed President Grover Cleveland push a button bringing the fair to life and from that point forward, 80% of all electrical devices sold used AC power.

And New York…

Later that year, Westinghouse was awarded the contract to harness the power of Niagara Falls and when the plant came online in 1896, even the remaining Edison systems were forced to convert to AC power.

But the War of Currents cost everyone involved. JP Morgan, hoping to wrest full control of all hydroelectric power, manipulated the stock market to try and force Westinghouse to sell Tesla’s patents. Tesla saved Westinghouse, grateful for his patron, and asserted his own nobility over profits by tearing up his contract.  Westinghouse would survive, but Tesla would forever after be in debt and mostly forgotten…

Forgotten Genius

Despite his remarkable achievements in electrical power, including radical experiments designed to transmit unlimited power wirelessly through the air to consumers – for free – Tesla is generally only remembered as the inventor of the Tesla Coil, which you probably recall best from those old Frankenstein movies. The Tesla Coil builds up lots of high voltage electricity quickly and efficiently and is also a powerful radio transmitter.

While Edison is memorialized for his inventions and quotes, Tesla is all but forgotten by the average person, even though many of the theories he proposed inspired the work of physicists like Einstein, Hawking and Heisenberg (the scientist, not Walter White’s alter ego). He also had breakthroughs in radio, radar, x-rays, solar energy, and even robotics. His technological advances were years ahead of his time, even today.

To be fair, Edison wasn’t completely wrong. DC power is still used very prevalently today – especially in computers. That thick brick in your laptop, printer and desktop cable? It’s constantly converting AC to DC to protect your sensitive electronics from the “raging waves” of alternating current.

Who knew electricity had such a “shocking” history?

We would love to be your full service, seamless ESD solution provider; contact us today for more information.

01 Jun

Edison vs Tesla: The Battle for Electric Power

The battle of Edison vs Tesla

The year was 1887…

It was a battle royale – Jefferson vs Adams, the North vs the South, Hulk Hogan vs Randy Macho Man Savage, Jobs vs Wozniak, Trump vs Clinton… AC vs DC.

And when the dust settled, the guy who won really lost and the guy who lost became the champion that everyone remembers.

Back in the day before anti-trust laws forced the breakup of the remaining empire, the source of electricity – the power company – was known by one name… Edison. The name still lingers at Con-Ed in New York, SoCal Edison in California, and smaller units scattered all across the United States.  But the power that comes into your house wasn’t the famous inventor’s idea.

First Meeting

In 1882, Nikola Tesla left his phone company job in his native Serbia and headed to Paris where he found employment with the Continental Edison Company. There, he so impressed his superiors that they recommended his transfer to the United States, noting that his genius rivaled that of their founder.

Tesla was excited to meet one of his heroes, a man who had accomplished so much with so little training. But this hope quickly died. The very genius that should have brought them together, because of their mutually high opinions of themselves, in fact created a rift almost immediately.

Self-taught Edison preferred to do tedious trial and error experimentation – hence his famous quote about finding 10,000 ways that didn’t work – while Tesla was a trained engineer and creative dreamer who preferred to come up with theories before testing them practically. Which drove them both somewhat crazy.

Tesla lasted less than a year working with his former hero.

While Edison is famous these days for his quotes on productivity – “Genius is 5% inspiration and 95% perspiration,” Tesla believed that mindset was Edison’s biggest stumbling block:

If he had a needle to find in a haystack he would not stop to reason where it was most likely to be, but would proceed at once, with the feverish diligence of a bee, to examine straw after straw until he found the object of his search… I was almost a sorry witness of such doings, knowing that a little theory and calculation would have saved him 90% of his labor.–Nikola Tesla

The War of the Currents

But the most famous falling out between the two men came to become known as the “War of the Currents.”

Edison stood by direct current (DC), while Tesla advocated for alternating current (AC).

The man who became a household name after his invention of the light bulb, the phonograph, the movie camera and countless other helpful, soon to be household items, didn’t want to bring “dangerous” alternating current into every home.  He was convinced the best way, and certainly the safest way, to power the world was through single direction DC power.

But Tesla, with his theoretical approach, pointed out that DC power had severe limitations that would impact the future. In the 1880’s, DC technology only allowed for a power grid with a one-mile radius from the power source. And while DC only went one way, AC power allowed the flow of energy to go both ways, creating a much more practical solution for transmitting large quantities of energy to power an industrial city, which he predicted the United States would rapidly see more of in the coming years.

Unfortunately, Tesla did not always employ his considerable prognostication techniques to his own life. In his efforts to prove his former mentor wrong, he made a deal with a Pittsburgh industrialist whose name would also become a household word – George Westinghouse. Westinghouse paid Tesla a handsome fee, including residuals, for his AC motor and electrical transmission patents and began a campaign to make the public aware of his newly purchased invention.

In retaliation, Edison launched his own propaganda campaign against alternating current, even sending Professor Harold Brown on a “speaking” tour, where he routinely used AC power to electrocute dogs, horses, elephants and a convicted ax murderer in New York.

But everything changed on May 1, 1893—stay tuned next week to find out!