Warning: Trying to access array offset on value of type bool in /home/gndzero/public_html/gndzero.com/blog/wp-content/themes/fruitful/functions.php on line 575
29 Jun

Custom Matting: A Ground Zero Specialty

Custom Matting-A Ground Zero Specialty

If you’ve ever worked with an X-Acto Knife or a box cutter, you know there are some dangers, just as there are with any knife. Remember, pay attention to what you’re doing! Never use a dull blade! Cut away from your body!

And of course, wear cut resistant gloves. Yes, we know you’re a man, and men don’t need certain protections… Okay, so both genders have their issues, but this one rule is the one we most often neglect – and that neglect leads to injuries.

You’re being careful, cutting along, everything’s going smoothly and SLICE!

Yes, that’s right, you’ve just sliced open your finger, there’s blood everywhere – you have to go to the emergency room and get stitches.

It kind of ruins your day.

OSHA reports that nearly 40 percent of all injuries attributed to manual workshop tools in the US involve knives with retractable blades.

And according to the Bureau of Labor Statistics, around 250,000 serious hand, finger and wrist laceration occur annually in the private industry.

So that scenario we described above?  It’s far more common than you might think. And, in the interest of your safety and our bottom line, we took action.

A Cut Above

So what did Ground Zero do to help insure your workplace safety?

In an earlier post, we talked about ESD mats – what they are and how they work, but today we’d like to get… a little personal, if that’s okay with you.

Most table and bench mats are built with either two or three layers. The top layer is resistant to chemicals, solder and flux, making it usable and easy to clean. The bottom layer is either a durable anti-skid surface and/or an adhesive backing, both to ensure safety on the work area.

Three-layer mats have the added bonus of a conductive scrim layered in the center that can coordinate with your personal wrist-strap constant monitors.

As you can imagine, all of these layers make the mats a little thicker than cardboard or just a vinyl mat. And, as you know, when cutting with an X-Acto knife or box cutter, the thicker the material you’re trying to cut is, the more prone the blade is to slipping, leading to that ER visit.

So to help promote the safety of our customers’ workplaces, we decided to offer custom cut matting.

That’s right, any of the mats we sell can be custom cut to your specifications (with a small margin of +/-1/8th of an inch). Plus, each and every custom cut mat comes with an ISO certification showing it has been tested and met the latest professional standards.

So which would you prefer, a trip to the emergency room, or the ability to get to work on with your new ESD mat right out of the box – with all of your fingers intact?

Oh, and finally: a little safety advice, whether you want it or not. When using a knife or blade of any sort, stay sharp! Follow all of those rules we mentioned above, ‘cause we all know a lot of us do ignore them and they were created for our safety.

We would love to be your full service, seamless ESD solution provider; contact us today for more information

04 May

Finding ESD Storage Solutions

Finding ESD Storage Solutions

There’s a classic scene that appears, with some variation, in every James Bond film.  Bond gets assigned a new mission and he goes to see MI-6’s Quartermaster, or “Q.” Q gives Bond everything he needs to complete the mission, including a few items that seem unusual or out of place.

Of course, as Bond fans know, these elements will at some point be combined to facilitate a distraction so Bond can escape. And usually that distraction is a rather large explosion.

One wonders how he was transporting the items before so that they didn’t explode in his Armani suit.

Of course, in real life, when items combine, the result isn’t usually an explosion.  Or is it?

As we’ve mentioned before, the amount of Electrostatic Discharge (ESD) required to cause significant damage to sensitive electronics is far below the threshold where a human being can feel it.

By the time our bodies create a static charge that we can feel, it’s somewhere between 3 & 17 times stronger than what most electronics can handle without suffering damage.

Even just the controlled blowing of air, like the old canned air computer dust removal techniques can cause static ESD build-up that can be transferred to your sensitive electronics.  And that tiny electrostatic discharge can cause latent or catastrophic failure, costing you time and money.

We’ve discussed selecting the proper shielding bags in a previous post. Another important weapon in your Electrostatic Discharge defense arsenal is anti-static ESD storage containers.

ESD Storage Containers

ESD storage containers are typically made of a conductive material, such as polypropylene or high density polyethylene and provide an added layer of protection, shielding your work areas and personnel from the harmful effects of ESD.

The conductive material provides a barrier which these fields cannot penetrate and prevents the build-up of electrostatic charge. The bins, totes and miscellaneous storage containers come in both static dissipative and conductive. Both control a potential electrostatic discharge, one by resisting it, the other by neutralizing it.

Additionally, be on the lookout for non-ESD protected items that may stray into the Electrostatic Protected Area – transparent tape, plastic sandwich bags, water bottles, Styrofoam coffee cups, even just pieces of paper – can be the source of an uncontrolled electrostatic discharge.

Of course, all of these storage solutions should be used within the minimum guidelines of an Electrostatic Protection Area, that is, wrist straps, ESD mats and a common ground.

We would love to be your full service, seamless ESD solution provider; contact us today for more information.

20 Apr

How Do You Care for Your ESD Floor?

How to Care for Your ESD Floors

So you’ve finally got your brand spanking new Electrostatic Discharge (ESD) preventative flooring installed. It looks great, it works great. But how do you keep it that way?

You’re smart enough to know that just like this is a specialized floor, it requires specialized care. Not just any cleaning products will work. You certainly don’t want to void the warranty, or even worse, compromise the ESD properties of the floor. That could drastically escalate costs – replacement of the damaged electronics, replacing the floor itself – having to apologize to your clients and replace the electronics they trusted you to provide.

You can’t find anything in the installation instructions. You hear the boss’ voice around the corner, you know he’s going to ask these questions. You don’t have the answers. You look down and you’re not wearing any pants!

Well, we can’t do anything about your pants, but we do have some answers to avoid that other nightmarish scenario.

For starters, take a break – for the first 5 days following a new installation, don’t wash or machine scrub the floor. This allows the adhesive to properly bond with the concrete base, as well as to prevent excess moisture – the #1 enemy of ESD flooring – to interfere with the adhesive.

The First Steps

Once the first week has passed, do an initial maintenance cleanup. Sweep or dust mop the surface to clear it of all sand, grit, debris, or dirt. Then mix a neutral pH detergent with a small bit of water in a mop bucket.

Dip the mop in the solution and fully wring it out. It is important to ONLY use a damp mop. Do not flood the floor with cleaning solution. Use as little liquid as possible to clean the surface.

If needed, scrub the floor using a rotary scrubber with scrubbing pad or automatic scrubber with scrubbing pads. Again, using as little water as possible!

Use the wrung out mop or a wet vac to wipe up any excess cleaning solution. Carefully rinse the surface with cool, clear water, but not too much, and again vacuum or damp mop up the water and let it dry.

Never use standard floor wax or standard floor finish!  Doing so will destroy the floor’s ability to prevent ESD. A high gloss appearance can be achieved with a high speed buffing machine with an untreated polishing pad.

Daily Care & Cleaning – Two Options

For your day to day cleaning and upkeep, there are two standard approaches for ESD flooring. Both are viable, but for obvious reasons, we prefer the first method.

Safety First!

Always be aware that a wet floor is more slippery, and therefore more dangerous to personnel. Try to coordinate cleaning of the floor to the end of the workday when fewer people are around, put up appropriate signs, and always exercise caution to prevent workplace injuries.

The first step in either case is to sweep or dust/dry mop the surface.

Dry Maintenance Method (Option 1)

By limiting the amount of liquid your floor is exposed to, you stand they best chance of avoiding the #1 enemy of ESD flooring – moisture. The Dry Maintenance Method is a simple, single step process.

Spray clean or burnish floor using a 1200 – 1500 rpm rotary buffing machine with appropriate pads (usually white) and a spray buff solution containing water, alcohol and a pH neutral detergent.

If heavy cleaning is necessary use a more concentrated pH neutral detergent and a brown pad.

Wet Maintenance Method (Option 2)

Similar to our initial cleanup procedures following installation, the wet maintenance method uses a damp mop and a cleaning solution that includes a neutral pH detergent.

If the floor is exposed to grease or oil, a pH neutral, citrus-based degreasing detergent may be used.

Scrub with rotary scrubber with scrubbing pad or automatic scrubber with scrubbing pads. Again, do not flood the floor with solution, water or any liquid.

Wipe up the solution with a damp mop or wet vac.

Carefully rinse with clean cool water, wipe it up, then let the floor dry (generally overnight).

Two final notes:

Several times we’ve mentioned using a pH neutral detergent. While there are many options, we highly recommend the industry standard – ZeroStat products. They can be purchased through our site or any reputable supplier of ESD preventative products.

Earlier, we recommended not using a standard floor wax. While there are professional ESD waxes available from ZeroStat that maintain the ESD preventative properties of your flooring, even those waxes generally cut five to ten tears off the life of your ESD floor and should be used with caution.

We would love to be your full service, seamless ESD solution provider.  Contact us today for more information.

12 Apr

What Are ESD Mats & How Do They Work?

Static Electricity and ESD Matting

Have you ever been working in your garage and accidentally made contact with a metal part of an ungrounded electrical appliance, like a box fan or a badly wired junction box? The jolt you receive wakes you up faster than a cup of coffee or one of those 5-hour energy drinks. Now imagine what that could do to sensitive electronics—devices and circuit boards with a much lower resistance than your skin.

Considering just the physical activity of moving your arms and legs can build up relatively large electrostatic discharges (ESD) that we may never notice, there’s very little activity that isn’t dangerous to electronic components – even their assembly. But there are steps you can take and tools that have been developed to protect your sensitive electronics. One simple, popular tool is an antistatic or ESD mat.

How Does an ESD Mat Work?

Antistatic or ESD Mats have a high electrical resistance, which allows the electrostatic discharge to “flow” across the surface of the mat at a slow rate – enough to get the ESD away from your electronics, while at the same time neutralizing what little charge inevitably does build up.

The simplest form of an ESD mat is simply that – a tabletop mat, about the size of a placemat, that you use on a desk, table or any flat surface. They typically connect with a personal grounding wrist strap – adding additional protection by drawing any ESD charge away from the person working on the device.

ESD mats also use a common ground to draw the electrostatic discharge away from offending areas. Without that ground, the mat could, in theory, protect the item being worked on at first, but would then transfer the ESD to the very next thing it comes into contact with – the next item, the person holding it (and then to the item), or even right back onto the item it was originally meant to protect.

For larger workspaces, or dedicated ESD workstations, you can invest in rolls of ESD matting or custom-sized mats. You can even get ESD matting with built-in static control monitors and self-adhesive backing.  Just make sure, regardless of the size or quantity used, that all of the mats are grounded.

You can also increase protection as well as worker safety by investing in ESD flooring mats, which not only act as further neutralization of potential electrostatic discharge but also can provide cushioning, easing the fatigue of the person standing while working on the electronic devices. The hazard of slippery floors is also alleviated by an ESD flooring mat.

Bear in mind that not all ESD matting is tested to the same level.  We recommend checking to make sure the mats you are buying are properly assessed to ensure you are getting the protection you need, and ideally, include ISO certification for your company’s protection.

We would love to be your full service, seamless ESD solution provider.  Contact us today for more information.

29 Mar

The Truth About 11 Myths of Electrostatic Discharge

11 Myths of Electrostatic Discharge

Would it surprise you to know that a good portion of our modern world would be unable to function without the help of electrostatic discharges (ESD’s)?

No one seems to know quite how it happened, but in 1984, Scott M. Kunen applied for a patent for a “touch controlled switch” – a device he had developed to allow lamps to be turned on or off with the touch of a human hand.

Little did he know that less than a decade later, computer companies would begin adapting his technology, covering it with a variety of static controlling sheaths, creating the capacitive-touch screen, the basis for all modern smart phones, tablets and touch screen laptops.

So, here’s the truth about the myths of electrostatic discharge.

Myths About Electrostatic Discharge

Myth #1 – All ESD is bad.

The truth is, most people use ESD everyday to make phone calls, send text messages, and create emails. The touch controlled switch and the capacitive-touch screen both operate by transmitting small ESD charges from your body into the devices to signal turning a light on, or the letters or numbers desired.

Myth #2 – Electrostatic Discharge is a modern day problem.

Believe it or not, ESD and necessary precautions to prevent it are older than the United States. In the 1400’s, forts and places that stored or produced explosives, gun powder, and even sawdust could fall prey to horrible accidents, so early forms of ESD control were developed and implemented.

Except, of course, when the good guys needed to blow up the bad guys’ stash in a Hollywood movie.

Myth #3 – ESD problems are really quite rare.

In truth, because of the extremely low levels of ESD required to damage small electronics and the fact that damage isn’t always visible or catastrophic, we may never know just how prevalent ESD events are.

Visible static sparks generated by our bodies have to build up between 500-1000 volts, and it takes twice that charge to be felt.  Most sensitive electronics can be damaged by 100 volts or less.

And even if the device continues to function as expected, its life expectancy may be severely diminished and in some cases, latent failure can occur, causing even more damage.

Since we cannot fully prevent or even detect an ESD event, all precautions should be taken to avoid an accidental discharge.

Myth #4 – Discharging fingers and tools before using them is sufficient precaution against ESD mishaps.

Unless you are able to hold your body AND tool perfectly still, you can (and often do) build up a replacement charge that can be discharged into your electronics.

As mentioned above, because of the negligible amount of charge necessary to potentially damage the sensitive parts, you have no way of knowing you are not transmitting a dangerous ESD. It’s better to be safe than sorry.

We recommend that you always use personal wrist straps, dissipative mats and grounding cords for the best chance of circumventing ESD problems.

Myth #5 – You have to touch an item to transmit an ESD to it.

As mentioned above, it takes very little for the human body to build up an electrostatic discharge. Just the movement of lifting your foot off the ground can generate up to 1,500 volts.

And that generated charge can easily leap from your hand to your unprotected device inches away.

Stay tuned next week for Part 2 of The Truth About 11 Myths of Electrostatic Discharge…

We would love to be your full service, seamless ESD solution provider, no matter what your size or budget.  Contact us today for more information.

25 Feb

What is Ionization & Can it be Prevented?

What is Ionization and Can it Be Prevented?

In the late 1930’s, Walter Jaeger, a physicist from Switzerland was trying to develop a portable sensor for poison gas. He theorized that gas entering the sensor would bind to ionized air molecules and thereby alter an electric current in a circuit in the instrument. Unfortunately it didn’t work – until he lit up a cigarette.

The smoke particles from Jaeger’s cigarette “sparked” a change in current of the ionized particles and the process would be later adapted to the early version of smoke detectors used in most homes in the 1970’s.

What is Ionization?

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons. Ionization can happen as atoms or molecules pass through gases, liquids and sometimes solids.

For the purposes of our discussion, we’re primarily going to be talking about ionization through gas – a specific gas – our atmosphere.

As mentioned, ionization can be positive or negative. Because of the large quantities of air that we encounter in an average building, generally negatively and positively charged ions balance each other out. This is not always the case, however.

Sometimes ions on either side of the spectrum can build up, especially in an environment filled with recycled air. In fact, in some cases, there is a secondary ionization, where the electrons resulting from the passage of charged particles leads to further ionization.

In a previous article, we talked about the various elements of creating an Electrostatic Protected Area or EPA. There are some instances where the addition of an ionizer or an ionizer blower would supplement the protection afforded by a standard EPA.

Ionizer Blowers

Ionizer blowers create a dense and well-balanced ionization current that can help neutralize the air in an EPA workspace. A typical blower uses AC technology to continuously produce a balanced output of positive and negative air ions.

In addition, ionizer blowers come with many options – including task lights, AC and variable speed fans – that will complement the workspace at the same time the ionizer is easily integrated into the EPA workspace.

For smaller, precise jobs, you can even invest in a handheld ionizing air gun.

But, while ionization is good ESD practice in controlling necessary non-grounded static charge generators, they should never be considered replacements for the essential ESD protections – personal ESD wrist straps, ESD control mats and grounding cords.

Contact us today for more information; we would love to be your full service, seamless ESD solution provider.

25 Feb

Building an Electrostatic Protected Area (EPA)

How to Build an Electrostatic Protected Area

Almost everyone’s familiar with the image of a white “cleanroom” or “bunny suit.” They show up in just about every depiction of people working in computer facilities in popular entertainment, and it’s a highly sought after specialty ‘armor’ in the video game Fallout 4.

What most people may not know is that the suits are designed not to protect the person inside, but the delicate circuitry they’re working on.  But not everyone who works with small, sensitive electronics needs to spend money for a full-on, disposable suit.

If you work with a lot of small electronics, a more affordable solution is to put together an electrostatic protected area (or EPA).  This doesn’t have to take up a lot of space and can actually be quite portable.  It just needs to be done properly.

Let’s start with the basics and work our way up to the safest and most expensive options.

Simple EPA

At a bare minimum, all personnel working within an EPA should have a personal grounding wrist strap.  These make sure any excess energy is grounded – forced away – from the electronic devices and circuit boards being handled.

Connected to that grounding strap is a dissipative mat. Dissipative means quite simply to disperse or disappear.  A properly designed and implemented dissipative mat does for the surface what the grounding wrist strap does for the person – protects sensitive electronics from electrical discharges.

Mats can be purchased pre-cut or in rolls, depending on what your needs are.

Attached to both of these is a common point cord, also referred to as a grounding cord.  These cords are fully insulated and take any electrostatic charges away from the person and the ESD mat to be grounded safely.

Often these simple options are packaged together as a field service or workstation kit that can be purchased as one unit to avoid forgetting any key elements.

Now that we’ve established the minimum requirements for an EPA, let’s look at additional options that can be easily implemented within your system to further insure the safety of the components and reduce the risk and excess cost of replacement.

From the Ground Up

For more permanent EPA installations, there are a variety of flooring options that can be integrated.  Everything from conductive and dissipative vinyl tiles to anti-static carpeting that can be utilized in the work area or just in the area surrounding your EPA system.  You can even add flooring with a high-end moisture barrier as well as anti-static protection.

Sole Protection

One of the most obvious ways we build up a potentially dangerous electrostatic discharge is just by walking.  Static charges build up naturally.  While a personal grounding wrist strap will help dissipate the charge, there are additional options for your feet.

Shoe covers with conductive strips are a quick, low cost addition to an existing EPA system and great for alleviating the risk of allowing visitors into the EPA area.

For employees whose duties mean they spend substantial time in the EPA area, you can add foot and heel grounders, toe grounders and sole grounders.

For even more protection, grounders can be upgraded to ESD shoes.  These come in a variety of styles for your business setting – even weatherproof boots and hiking models.

Additional Considerations

Adding isolation protocols and ESD protective containers can also complement your EPA system and reduce the chance of any accidental charges building up or discharging into your electronic components.

Of course grounding should be a consideration with any additions to your EPA system.  Whether it’s flooring or matting, grounding cords with a built in resistor add that much more protection to your area.  And the more working parts you have, the more grounding capability you require.

There are simple options to increase the grounding ability of any size EPA system, as well as monitors that can be added to the system – at the personal or system-wide level.

And if you really feel the need to cover yourself top to bottom, there are more workable clothing options as well.

Contact us today for more information; we would love to be your full service, seamless ESD solution provider.

03 Mar

Paperwork in the Electrostatic Discharge Protected Area (EPA)

Q: In our organization, there is a lot of paperwork that accompanies the product. Is this harmful to the product due to static generation? I have measured all the documents surface resistivity and find it to be dissipative in nature. Our production environment humidity is controlled from 40%-60%. I also tried to tribocharge the paper but there is no static voltage generated. The funny thing is when I rub my plastic comb and put it near bits of small paper, the bits get attracted to the comb. So is paper really harmful to the semiconductor products that we manufacture for our customer?

ESD Dissipative / Cleanroom Paper

ESD Dissipative / Cleanroom Paper

A: Hello.  It’s good for you to observe the possible generators of static in an EPA (Electrostatic Discharge Protected Area) and to remove all non-essential insulators and to ground conductors or soft ground them, as the case may be, and to use neutralization on isolated conductors and essential insulators (ionization).  You may notice low static charge potential or voltage on that paper, but what happens when it tribocharges with other materials in the EPA? Read More