28 Jul

5 Reasons Why Static Programs Fail

Why Static Programs Fail

On May 6, 1937, the German passenger airship LZ 129 Hindenburg caught fire and was destroyed, killing 36 people in front of national news cameras and effectively ending the Zeppelin flying experiment.

The Hindenburg was larger than 4 Goodyear blimps combined, or about as long as 2/3 the height of the Empire State Building.

It was rainy that day, and the mooring ropes dragged along the ground as the airship came down to dock in Manchester Township. The prevailing theory is that the wet dragging ropes generated a static charge that traveled up them onto the ship.

There the charge ignited the Hydrogen fuel and… boom. Once considered the future of air travel, flying airships would not be utilized, either commercially or for military use until the end of World War II.

All caused by a single spark.

Much like the Hindenburg disaster, your company’s program to control electrostatic discharge (ESD) can be toppled with a few small errors that blossom into larger problems if they aren’t properly accounted and planned for.

So today, let’s look at the 5 common reasons why your static control programs could fail.

Sure! We have ESD Protocols, Right?

Most companies that deal with sensitive electronics and circuit boards also require that their vendors, third party suppliers, and subcontractors have an ESD program in place. Often even before signing a contract, an engineer is sent in to audit the ESD practices. And from time to time they will do spot-checks to verify that those practices are still in place.

Some companies, in an effort to hold on to their contract or cut expenses, will simply throw together a minimum program that can be audited. It’s done as inexpensively as possible and often doesn’t have any true protocols – training, preventative maintenance, and enforcement fall by the wayside.

You’d never do that, right? Well, except…

This is Gonna Cost How Much?

Top management are always looking at ways to work more economically. Unfortunately, if they are not properly briefed on the importance of proper ESD protection protocols, they may see many aspects of the ESD program as expensive and possibly unnecessary.

This isn’t their fault, they just need to be better educated. Which may be your job. The fact is, the expense for good, well-developed ESD protection protocols is dwarfed by the cost to replace or repair non-functioning components, not to mention the company’s reputation.

Excellent ESD companies are led from the top down, with company leadership not only showing financial support for ESD preventative programs, but also making time to attend training themselves, praise persons and departments with the best implementation, and allocate time and funds for ongoing training and improvement of existing programs.

Otherwise, you might end up in a pinch…

Here’s a Band-Aid for that Severed Limb!

You might have heard the old saw, ‘if there’s no time to do it right the first time, how are you going to find time to fix it later?’

Unfortunately, many companies appear to follow a different maxim – there’ll always be time to do it over.

Like our last reason, the problem is often financial. Momentary solutions that can be quickly applied to fix individual problems becomes the norm, despite the fact that the long term expense is much higher.

The best, most cost-effective solutions are applied right the first time and “solve” lots of problems by the fact that they prevent so many of them for happening. Then you don’t get into a situation where you’re spending a lot more to fix what could have been an easily avoided minor problem, but is now mission critical.

But that’s not going to help unless…

Training?  We Don’t Need no Stinking Training!

Proper ESD prevention is a team effort, but many companies underestimate the size of the team involved. As mentioned before, upper level management should take an interest in training, and in fact, every employee should be given at least a rudimentary class or video in how to follow the company’s practices.

It’s not enough to train the engineers of you haven’t informed the janitorial staff that cleans their sensitive work areas after they leave for the day how to properly do so.

Secretaries, interns, sales people – everyone who has the potential to walk into or affect an Electrostatic Protection Area (EPA) needs to know how to properly behave to minimize risk.

And finally…

We Only Use the Best – the Best We Can Afford, That Is.

Yes, it keeps coming back to price. But price should not be the only factor in deciding who to buy your ESD supplies from. Not all companies are created equally. Not all ESD products are held to the highest standard.

You want to find a vendor that can supply your ESD needs who can guarantee all of their products are properly tested, meet or exceed industry standards, and have the certification to prove it.

Always be sure to properly vet your chosen vendor, making sure they meet these requirements and be willing to ask for clients you can speak to and recommendations you can verify. If they’re reputable, they’ll be more than willing to have you check them out with their existing happy clients.

ESD prevention is no casual task. Your company may not have the risk of ending 36 lives, but putting best practices into place can certainly save jobs, computers and your clients.

We’d love to be the experts you can count on for your full service, seamless ESD solutions. For more information or advice on your specific ESD prevention needs – or any other ESD questions, please contact us today.

07 Jul

Is Bare Concrete Really the Best “Anti-Static” Flooring?

Is Concrete Really Anti-Static?

There used to be an old wives’ tale that standing on bare concrete for too long caused varicose and spider veins.  In the 60’s, that idea was largely supplanted by the hippie movement that believed standing shoeless on bare concrete allowed the body to become more grounded.

Unfortunately, it seems that the once-held hippie belief has permeated into the world of electrostatic discharge (ESD) prevention.  But nothing could be further from the truth. Because while bare, unsealed concrete floors that are allowed to ‘breathe’ have anti-static tendencies, they are definitely NOT grounded.

Nothing to Cling To

While the lower expense of a bare concrete floor makes it appear like a desirable remedy, there are several reasons it is not classified as a true ESD flooring solution.

First there’s that word – tendencies. Bare concrete floors tend to be anti-static, but they are not reliably so. That’s because anti-static characteristics are not inherent in concrete like they are in a carbon-filled material or a poured ESD epoxy.

To further complicate the issue, the measure of how anti-static concrete is, is dependent on many variables – the most significant of which is its permeability to moisture. If you’ve explored our website at all, that should immediately raise a red flag.  In an earlier post, we talked about why moisture is the #1 enemy to your ESD flooring.

A Shift in Standards

If that doesn’t scare you away, we discussed in this post about how anti-static is not an adequate measure for ESD flooring. To summarize, the term “anti-static” refers to a material that resists generating a charge. And bare, sealed concrete does do that – most of the time. But over the past 30 years or so, ANSI and the ESD Association made the effort to remove the term from their professional industry standards because it was so overused and misunderstood.

Those standards are discussed in this post.

And for good measure, we discuss in another post the dangers of cutting corners to save money when building your ESD Protection Area (EPA). Some up front expenses are definitely worth the long-term benefits.

Fully Charged

So, let’s assume that the concrete floor you’ve just installed is as anti-static as it can get. You can walk across it to any other part of the room and there will be no static buildup, aka triboelectric effect.

But what happens when the CEO comes down to inspect the area, and as he’s walked from his office to the EPA area, he’s built up a static charge. It’s on his body, on his clothes; we know that even the slightest movement in a conductive area builds a charge that can damage sensitive electronics.

When he hits that concrete floor, the charge doesn’t just disappear. It stays with him. Because while concrete has the tendency to avoid building up a static charge, it does nothing to dissipate an existing charge. And this is the biggest problem with the use of concrete as an ESD floor. It cannot act as a ground.

The CEO touches a circuit board, it gets the electrostatic discharge, ruining it – and he blames you. And then you have to install a true ESD floor anyways. Why not just do it right the first time?

We would love to be your full service, seamless ESD solution provider.  Contact us today for more information.

22 Jun

Are You Grounded: A Look at Cables, Clamps, and Drums

A closer look at cables, clamps, and drums

Do you remember the cell phone gas fire scares of the early 2000’s? Because of a couple of erroneously spread Internet rumors, people all across the world became convinced that use of their cell phones while at the gas pump could lead to explosions, injuries, even death!

Despite the fact that the rumors were all proven to be false, several gas station chains, including the one whose safety report was misquoted to create the rumors, posted stickers warning against cell phone use. One Chicago suburb even passed a law banning the use of cell phones at gas stations.

If you look closely, those stickers are still on a majority of gas pumps, at least in the US and Canada. But while there has never been a case where cell phones caused gas fires, the same is NOT true for static electricity.

We’ve talked a lot in the past about the danger even a small electroStatic discharge (ESD) can pose to sensitive electronics. But in a combustible atmosphere, that tiny spark can cause a lot more damage than the cost of replacing a damaged circuit board.

Static is Everywhere

Walking across a room, rustling your clothing, even just the act of raising your arm to scratch your nose can generate a sufficient static buildup to create a subsequent ESD if not dissipated. Under normal conditions, you won’t even notice the buildup until you feel the shock of the discharge being released.

When you’re not working with sensitive electronics, you probably don’t even consider this to be a problem, certainly not in your home or driving in your car. But like all charges, if it’s not given a route to ground, the charge continues to build, increasing the voltage. And if you happen to be in an area with flammable liquids, vapors and even dust, that static charge can cause explosive consequences.

The first step to avoid incidents in any environment conducive to these volatile exposures is to eliminate as many potential ignition sources as possible. But there are often unconsidered, hidden dangers, especially in an industrial setting that can act as accidental ignition switches.

Isolated Conductors = Hidden Dangers

Isolated conductors are conductive objects – metal flanges, fittings or valves in pipework systems, portable drums – which are either inherently or accidentally insulated from being grounded. Because of this, any static charge they generate becomes a potential ignition point.

The best way to avoid this problem is by utilizing bonding and grounding. Bonding is the process of joining two or more objects or containers with electrically conductive wires to neutralize the potential charge between them.  Grounding is a more specific form of bonding where an object or container is connected to the ground.

There are a variety of ways to effectively employ bonding and grounding. While OSHA does not give clear directives on how to ground, they do specify when and where grounding as well as bonding procedures should exist.

Getting Grounded

The most obvious example to point to is the common ground, seen in every building – a metal rod is attached to the outside of a building and literally grounded a few inches into the soil. While this method works great for homes, the size of large industrial expanses, such as warehouses or factory floors, means other methods may be more suitable.

For manufacturing or large storage areas, there are a few options. They all involve grounding clamps connected to grounding cables.

If the area has access to the building’s main cold water pipe, a very common semi-permanent solution is to use a bronze pipe clamp as an alternative to the direct building ground. C-Grounding clamps are another popular semi-permanent solution. Of course, always check the reliability of the ground conductivity in these instances.

If you’re like many industrial complexes, though, the isolated conductors are often temporary items, like drums, containers and vessels that come and go as needed. For these instances, you can get a variety of steel- or aluminum-constructed clamps that attach to the container, connecting it through a stainless steel cable to a grounding point, making the drum or vessel safe.

Depending on the environment, you can also effectively ground using the drop valve of a mixing tank or connecting your ground cable to a previously grounded surface – a table or workstation that is already connected to the grounding apparatus.

Whatever method you choose, bonding and grounding are essential for the safety of everyone working in an industrial environment, whether they’re piecing together circuit boards, helicopters… or gas pumps.

We would love to be your full service, seamless ESD solution provider; contact us today for more information.

18 May

Conductive vs. Dissipative Materials

Conductivee Vs Dissipative

In the mid-1820’s, Georg Ohm, a self-taught mathematician and physicist, began doing experiments in the newly discovered field of electromagnetism. Hoping to advance his stalled career, he used the work of Hans Christian Ørsted as a jumping off point, discovering an inverse mathematical relationship between current and resistance.

Georg Simon Ohm

Georg Simon Ohm

Unfortunately, in an effort to make his theories more understandable to non-mathematicians, he managed to alienate the scientific community and his groundbreaking work went unrecognized for almost 15 years.

Today, he’s remembered by the law that bears his name and its legacy, the standardized unit by which we measure electrical resistance – the Ohm (Ω).

Electrical Resistance: The Water in Pipe Analogy

To put it simply, what Ohm had discovered, but failed to adequately communicate, is that electricity acts like water in a pipe. In this analogy, resistance tells us how wide or narrow the “pipe” transmitting the electricity is.

When two items touch each other, they create an electrostatic charge – one item is positively charged, and one negatively charged. When the items are separated, it creates a triboelectric effect – a buildup of potential energy which can result in an electrostatic discharge (ESD).

In our quest to prevent ESD, which can be damaging and potentially catastrophic to sensitive electronics and circuitry, there are several approaches that vary, depending on the situation.

To illustrate those, we go back to Ohm’s electrical “pipe.”

At the narrowest end of the pipe, we have insulative materials – wood, carpeting, plexiglass. Insulative materials prevent or severely limit the flow of electrons across their surface.

While it may seem that this is the highest and best protection, the opposite is actually true. Because insulative materials are self-contained, they do not ground – meaning the potential energy continues to build up without going anywhere, until it comes into contact with another object, at which point, the new item is bombarded with the electrostatic discharge.

At the widest end of the pipe, we find the conductive materials – copper, steel, water. Conductive materials offer almost no resistance to electrostatic discharge. The electrical charge moves quickly through the materials – too quickly, which can lead to significant problems, as well as safety hazards.

In between these two extremes are the two materials most often used for ESD storage containers, matting and flooring: static conductive and static dissipative.

Towards the wider end of our metaphorical pipe, we find static conductive materials. Because of the low electrical resistance, electrons flow easily across the surface, and can be grounded safely. Typically, static conductive materials are most often used for ESD flooring.

Towards the narrower end of the pipe we find static dissipative materials. The higher resistance of these materials keeps the electrical charge more under control as it slowly flows over the surface and into a ground. Static dissipative materials are much more commonly used for ESD prevention and can be found in table top mats, ESD shoes and some flooring.

For storage containers – boxes, bins & totes – both conductive and dissipative materials can be used, depending on individual needs. Just keep in mind that dissipative materials have a higher resistance than conductive materials.

For more information, or an even more technical discussion of the properties of ESD materials, contact us today.  We would love to be your full service, seamless ESD solution provider.

11 May

10 Common Terms in ESD & What They Mean

10 Common ESD Terms

In 1865, Lewis Carrol published Alice’s Adventures in Wonderland, at the time, a thinly veiled political commentary wrapped in a fictional form.

Who knew that 150 years later, the book would have spawned several movies, pop cultural references, and a Grace Slick song.

But the most enduring artifact of the novel in today’s world – possibly reinforced by its own self-reference in the Matrix films, is the term “Rabbit hole.” In Alice’s universe, it meant falling into a world of confusion. Today it means losing track of time as you plumb the depths of a topic.

In our effort to be a provider of full service ESD solutions, we give you… The ESD rabbit hole – 10 Common Terms in ESD and What They Mean…

10 Common ESD Terms

The obvious place to start is with the term itself: ESD

ESD stands for ElectroStatic Discharge, a specific type of Electrical Overstress (EOS), defined as the sudden flow of electricity between two electrically charged objects caused by an electrical short, insulation failure, or simple contact. This is most often observed as static electric shock.

Electrical Overstress (EOS) is the exposure of an item to a current or voltage beyond what it can handle. When we’re talking ESD, it’s not just a static shock – because of the nature of sensitive electronics, even just a tiny bit of energy generated by lifting your hand or sliding across a desk can be dangerous enough to damage a component while you’re working, which is shy we recommend common grounding.

Common Grounding is a grounded device where two or more conductors are bonded, or a system for connecting two or more grounding conductors to the same electrical potential. Think of it as a lightning rod for your workstation.

Triboelectric Charging is the generation of electrostatic charges when two materials make contact, or often are rubbed together, then separated. This is what most people call static cling. The polarity and strength of the charges produced differ according to the properties of the materials.

Surface Resistance is measured in Ohms, and tells you how easily an electrical charge can travel across a type of surface. It might be helpful to think in terms of a water pipe analogy. The higher the resistance, the narrower the pipe. In the ESD world, a surface is either conductive or dissipative.

Conductive – A surface is conductive when it has a low resistance, anywhere from no resistance at all, such as water or copper, to mid-level resistance. This would be the wider of the two water pipes.

Static Dissipative – A surface is dissipative when it has a higher resistance, anywhere from the top end of the conductive to so much resistance that only a tiny trickle of “water” comes through the pipe.

Degradation is static electricity damage that weakens an electronic device, while giving the appearance of operating within normal parameters. However, once degraded, a device may fail catastrophically at a later point or just not last as long as it should.

Catastrophic failure is static electricity damage to a device that causes it to cease to function. The device must be replaced.

Ionization is the process by which a neutral atom or molecule acquires either a positive or a negative charge.

To Neutralize is to eliminate an electrostatic field by recombining positive and negative charges, either by conducting the charge to ground or by introducing an equal opposite charge. The charges cancel each other out, leaving a zero charge on the item.

We would love to be your full service, seamless ESD solution provider. For a deeper explanation of any of these terms and how they affect your workplace,  contact us today for more information.

12 Apr

What Are ESD Mats & How Do They Work?

Static Electricity and ESD Matting

Have you ever been working in your garage and accidentally made contact with a metal part of an ungrounded electrical appliance, like a box fan or a badly wired junction box? The jolt you receive wakes you up faster than a cup of coffee or one of those 5-hour energy drinks. Now imagine what that could do to sensitive electronics—devices and circuit boards with a much lower resistance than your skin.

Considering just the physical activity of moving your arms and legs can build up relatively large electrostatic discharges (ESD) that we may never notice, there’s very little activity that isn’t dangerous to electronic components – even their assembly. But there are steps you can take and tools that have been developed to protect your sensitive electronics. One simple, popular tool is an antistatic or ESD mat.

How Does an ESD Mat Work?

Antistatic or ESD Mats have a high electrical resistance, which allows the electrostatic discharge to “flow” across the surface of the mat at a slow rate – enough to get the ESD away from your electronics, while at the same time neutralizing what little charge inevitably does build up.

The simplest form of an ESD mat is simply that – a tabletop mat, about the size of a placemat, that you use on a desk, table or any flat surface. They typically connect with a personal grounding wrist strap – adding additional protection by drawing any ESD charge away from the person working on the device.

ESD mats also use a common ground to draw the electrostatic discharge away from offending areas. Without that ground, the mat could, in theory, protect the item being worked on at first, but would then transfer the ESD to the very next thing it comes into contact with – the next item, the person holding it (and then to the item), or even right back onto the item it was originally meant to protect.

For larger workspaces, or dedicated ESD workstations, you can invest in rolls of ESD matting or custom-sized mats. You can even get ESD matting with built-in static control monitors and self-adhesive backing.  Just make sure, regardless of the size or quantity used, that all of the mats are grounded.

You can also increase protection as well as worker safety by investing in ESD flooring mats, which not only act as further neutralization of potential electrostatic discharge but also can provide cushioning, easing the fatigue of the person standing while working on the electronic devices. The hazard of slippery floors is also alleviated by an ESD flooring mat.

Bear in mind that not all ESD matting is tested to the same level.  We recommend checking to make sure the mats you are buying are properly assessed to ensure you are getting the protection you need, and ideally, include ISO certification for your company’s protection.

We would love to be your full service, seamless ESD solution provider.  Contact us today for more information.

25 Feb

What is Ionization & Can it be Prevented?

What is Ionization and Can it Be Prevented?

In the late 1930’s, Walter Jaeger, a physicist from Switzerland was trying to develop a portable sensor for poison gas. He theorized that gas entering the sensor would bind to ionized air molecules and thereby alter an electric current in a circuit in the instrument. Unfortunately it didn’t work – until he lit up a cigarette.

The smoke particles from Jaeger’s cigarette “sparked” a change in current of the ionized particles and the process would be later adapted to the early version of smoke detectors used in most homes in the 1970’s.

What is Ionization?

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons. Ionization can happen as atoms or molecules pass through gases, liquids and sometimes solids.

For the purposes of our discussion, we’re primarily going to be talking about ionization through gas – a specific gas – our atmosphere.

As mentioned, ionization can be positive or negative. Because of the large quantities of air that we encounter in an average building, generally negatively and positively charged ions balance each other out. This is not always the case, however.

Sometimes ions on either side of the spectrum can build up, especially in an environment filled with recycled air. In fact, in some cases, there is a secondary ionization, where the electrons resulting from the passage of charged particles leads to further ionization.

In a previous article, we talked about the various elements of creating an Electrostatic Protected Area or EPA. There are some instances where the addition of an ionizer or an ionizer blower would supplement the protection afforded by a standard EPA.

Ionizer Blowers

Ionizer blowers create a dense and well-balanced ionization current that can help neutralize the air in an EPA workspace. A typical blower uses AC technology to continuously produce a balanced output of positive and negative air ions.

In addition, ionizer blowers come with many options – including task lights, AC and variable speed fans – that will complement the workspace at the same time the ionizer is easily integrated into the EPA workspace.

For smaller, precise jobs, you can even invest in a handheld ionizing air gun.

But, while ionization is good ESD practice in controlling necessary non-grounded static charge generators, they should never be considered replacements for the essential ESD protections – personal ESD wrist straps, ESD control mats and grounding cords.

Contact us today for more information; we would love to be your full service, seamless ESD solution provider.