25 May

What Are the Standards for Electrostatic Protection?

Standards for Electrostatic Protection

So, you’ve just been tasked with building or designing your first Electrostatic Protection Area (EPA). You’ve started doing your research, but there are so many choices, from so many different companies. Suppliers, manufacturers, third party providers… If only there was some established standard for judging the efficacy and reliability of all those pieces and parts.

Well, you’re in luck! In 2007, the American National Standards Institute (ANSI) in cooperation with ElectroStatic Discharge Association (ESDA) released a unified set of standards for the design, implementation and maintenance of ElectroStatic Discharge control programs.

In the midst of World War I, five engineering organizations recognized the need to develop standards that could eliminate confusion and could be adhered to across all disciplines, without regard to politics, profits or personal preferences. These groups reached out to the U.S. Departments of War, Navy, and Commerce to form an impartial third party non-profit organization, then known as the American Engineering Standards Committee.

Following the war, the organization spent the next 20 years establishing several safety protocols still observed today, like eye protection, hard hat standards and in-house electrical safety while at the same time reaching out to other similarly tasked international organizations.

When the United States entered World War II, the organization, which would eventually come to be known as ANSI, helped to accelerate the war effort and productivity, created more effective quality control measures, as well as helping to advance photography, radio, and even the development of Velcro.

In 1970’s, ANSI established a public review process and began the herculean effort of moving the United States to the metric system. While the general public never really connected with the metric system, the effort did bring ANSI to the forefront of private sector companies who discovered standardization was a way to stay more competitive in an increasingly global economy.

With the advancement of personal computers in the late 70’s and early 80’s, engineers at several companies recognized a need for more understanding of electrostatic discharge and its prevention. They formed the ESD Association, a non-profit, voluntary professional organization that for almost 35 years has sponsored educational programs and developed standards to help eliminate losses due to electrostatic discharges.

Together, leaning on the historical experience of both military and several commercial organizations, ANSI and ESDA developed the definitive standard for ESD protection, the very cleverly named ANSI/ESD S20.20-2007.

Covering about every conceivable area of ElectroStatic Discharge, the ANSI/ESD S20.20-2007 utilizes both the human body model and the machine model to provide a broad set of guidelines for ESD protection.

The Human Body Model is the military standard that defines and rates the vulnerability of an electronic device to the ESD generated by a human being touching it. The Machine Model works similarly, except it rates the vulnerability of a device receiving a machine discharge into ground. It was originally developed by car manufacturers as their plants moved to more mechanized production technology.  The Human Body Model is about 10 times more sensitive than the Machine Model.

There is a lot to explore in the ANSI/ESD S20.20-2007 guidelines, but for the purpose of this primer, the document highlights 3 fundamental ESD control principles:

  1. All conductors should be grounded. This includes the personnel and the surfaces they are working on.  We recommend, at a minimum, personal grounding wrist straps, ESD table or bench mats, and a common ground cord.
  2. Necessary non-conductors – certain circuit board materials, device packaging, etc. – cannot lose their electrostatic charge by being grounded and appropriate precautions must be implemented.
  3. Static protective materials, such as ESD shielding bags or ESD totes and boxes must be utilized when transporting sensitive electronics outside a properly prepared EPA.

There are slightly less stringent standards that apply to floors and bench mats, but ANSI/ESD S20.20-2007 is the highest and most comprehensive guideline so far. So when you’re shopping for the parts needed to establish your EPA area, always look for companies that maintain that standard in their products and services.

We would love to be your full service, seamless ESD solution provider; contact us today for more information.

07 Jul

Are ESD shoes and Conductive shoes the same thing?

 

Q:

Are ESD shoes and Conductive shoes the same thing?

A: There are two types of ESD shoes, Static Dissipative and Static Conductive.

The Static Conductive shoe will guarantee a combined resistance of personnel and footwear of less than 1.0E6 Ohms.  I have a pair of Static Conductive shoes that when I’m standing on a static conductive flooring system (2.5E4 Ω to 1.0E6 Ω), my combined resistance from my body through the ESD footwear and through the ESD conductive flooring system to electrical ground or earth is less than 1.0E6 ohms per DoD 4145.26-M, C6.4.7.5.1: “The maximum resistance of a body, plus the resistance of conductive shoes, plus the resistance of the floor to the ground system shall not exceed 1,000,000 ohms total”… “The contractor can set the maximum resistance limits for the floor to the ground system and for the combined resistance of a person’s body plus the shoes, as long as the total resistance does not exceed 1,000,000 ohms.”

This Static Conductive shoe is typically used for electrical safety requirements for facilities that deal with explosive environments such as ordinance, munitions, explosive powders, flammable liquids, etc.  This is outside of the realm of ANSI/ESD S20.20-2007 and MIL-HDBK-263B.

If you’re goal is the protection of static sensitive devices, then Static dissipative shoes on a static conductive flooring system or a static dissipative flooring system will suffice so long as the combined resistance of personnel, footwear, and flooring to electrical or earth ground is less than 3.5E7 Ω as per ANSI/ESD STM97.1-2006.  In that case, a good static dissipative shoe will be more than 1.0E6 or a meg ohm, but the resistance will probably be less than 35 Meg ohms.  The best way to measure the footwear is to have personnel wear them for at least 10 minutes prior to going to the tester and checking for pass/fail low/fail high, as that’s the most practical way to test them.  You can measure the resistance of the shoe from insole to outsole, but they aren’t used that way on the ESD flooring system.  The ESD shoe relies on sweat from the personnel that wears them.

My combined resistance from my body, through my Static Conductive C4327 (men’s) or C437 (woman’s) shoes and through a static conductive floor to electrical/earth ground is about 7.0E5 Ω.  My combined resistance from my body through my Static Dissipative C4341 shoes and through a static conductive floor to electrical/earth ground is about 1.6E6 Ω.

I hope this answers your questions.  Please comment.

Thank you very much, Pat

Static Conductive shoe C4327 Resistance per ANSI/ESD STM97.1-2006

Static Conductive shoe C4327 Resistance per ANSI/ESD STM97.1-2006

0708090842

0708090845

Static Dissipative shoe C4341

Static Dissipative shoe C4341