

TC-2200 ESD Trash Receptacles

Replace the Static Generating Trash Can in Your ESD Controlled Work Area With a New ESD Safe Trash Receptacle

- Permanently static dissipative surface
- Buried "impregnated" conductive shield
- Easy to assemble requires no staples, glue or tape
- Dimensions: 22-7/8"x12-7/8"x32"
- Packaging: case of 3, box only
- Shipping weight: 7.00 lbs / 3.15 kg

Other Properties and Features:

- Economical ESD protective product to replace high charging plastic trash cans
- Antistatic, low charging dissipative surface
- Constructed with double sides, triple ends, and double thickness bottom for greater durability
- Conductive plastic handles provide ease of handling along with reliable ESD control path-to-ground
- Chemical resistant
- Identified with ESD Protective Symbol (Ref: ESD 8.1)
- Static dissipative surface of 10⁷ 10⁹ ohms*
- Buried shielding layer minimizes sloughing and rub-off contamination
- Made from 100% recycled material, and is 100% recyclable
- Made in America

SPECIFICATIONS

Properties	Typical Values	Test Procedures/Method
Electrostatic Decay	0.01 seconds at 72°F and 11.8% R.H.	FED-STD-101, Method 4046
Surface Resistivity	10 ⁷ - 10 ⁸ ohms/sq. after 11 days at 68°F and 12% R.H. for surface. 103 - 104 ohms/sq. for buried shielding layer	ASTM D257
Surface Resistivity, Low R.H. Cut-off	4% R.H.	Rockwell International Test Report of December 20, 1991
High-Voltage Discharge Resistance	Failure rate O/5 (no oxide damage in five consecutive tests)	Rockwell International Test Report of December 20, 1991
Static Shielding	99.9% attenuation at 10kV; 99.6% attenuation at 30kV	EIA 541, appendix E, capacitive probe test
Charged Device Model (CDM) Safety	$RTG > 10^7$ ohms at 86% R.H. or less	Rockwell International Test Report of December 20, 1991
Current-Carrying Hazard	103 mA at 110V; 103 mA at 220V	ESD from A to Z
Corrosivity	Contains 1-3 ppm reducible sulfur	FED-STD-101, Method 3005 for reducible sulfur
Antistat Transfer	No transfer	Rockwell International Test Report of January 8, 1992

Water & Isopropyl Alcohol Extraction Tests for Antistat Permanence	Surface resistivity 10 ⁸ - 10 ⁹ ohms/square at 74°F and 36% R.H.	Rockwell International Test Report of January 8, 1992
Sloughing Test	Negligible surface damage at 10 cycles and <5% of surface damage at 200 cycles in Taber Abrasion Test.	ASTM D4060 at 70 rpm with CS-17 abrasive-coated wheels and 1000 grams load
	No conductive particles abrased from surface	Rockwell International Test Report of January 8, 1992
Recyclability	Complete recyclability of package	Rockwell International Test Report of January 8, 1992
Biodegradability	Biodegradation in or on moist soil	
Volume Conductivity	Conductivity from wall to wall as well as across surface to assure permanence of the antistatic property	Rockwell International Test Report of January 8, 1992
Shelf Life	Indefinite	

* Per ESD Handbook TR20.20 paragraph 5.3.1.7 Electrical Considerations "[RTG is] The most important functional consideration for worksurfaces. This establishes the resistance of the primary path to ground for items, placed on the surface. When worksurface materials are being selected, consideration should be given to possible Charged Device Model (CDM) damage to ESD sensitive products. If CDM damage is a concern then setting a lower resistance limit for the worksurface should be considered. Typically, the lower limit for these types of worksurfaces is 1 X10⁶ ohms."

Folding Instructions

Bottom Folding Instructions

Wire Assembly Instructions

Insert handles before folding up box. Place shorter dimension of wire on crease where flap A & box meet

Insert flap A into wire. Fold flap A over short dimension of wire & completely into box while pulling the wire up. Make sure wire is within corner notches of flap.

Bring down the wire to the other side of the box and fold over flap B. Check to make sure that the wire is at the top of the box tucked under the flaps.

Fold flaps C & D at their middle creases and then fold them down into the box.

Make sure all flaps interlock with each other.

