12 Apr

What Are ESD Mats & How Do They Work?

Static Electricity and ESD Matting

Have you ever been working in your garage and accidentally made contact with a metal part of an ungrounded electrical appliance, like a box fan or a badly wired junction box? The jolt you receive wakes you up faster than a cup of coffee or one of those 5-hour energy drinks. Now imagine what that could do to sensitive electronics—devices and circuit boards with a much lower resistance than your skin.

Considering just the physical activity of moving your arms and legs can build up relatively large electrostatic discharges (ESD) that we may never notice, there’s very little activity that isn’t dangerous to electronic components – even their assembly. But there are steps you can take and tools that have been developed to protect your sensitive electronics. One simple, popular tool is an antistatic or ESD mat.

How Does an ESD Mat Work?

Antistatic or ESD Mats have a high electrical resistance, which allows the electrostatic discharge to “flow” across the surface of the mat at a slow rate – enough to get the ESD away from your electronics, while at the same time neutralizing what little charge inevitably does build up.

The simplest form of an ESD mat is simply that – a tabletop mat, about the size of a placemat, that you use on a desk, table or any flat surface. They typically connect with a personal grounding wrist strap – adding additional protection by drawing any ESD charge away from the person working on the device.

ESD mats also use a common ground to draw the electrostatic discharge away from offending areas. Without that ground, the mat could, in theory, protect the item being worked on at first, but would then transfer the ESD to the very next thing it comes into contact with – the next item, the person holding it (and then to the item), or even right back onto the item it was originally meant to protect.

For larger workspaces, or dedicated ESD workstations, you can invest in rolls of ESD matting or custom-sized mats. You can even get ESD matting with built-in static control monitors and self-adhesive backing.  Just make sure, regardless of the size or quantity used, that all of the mats are grounded.

You can also increase protection as well as worker safety by investing in ESD flooring mats, which not only act as further neutralization of potential electrostatic discharge but also can provide cushioning, easing the fatigue of the person standing while working on the electronic devices. The hazard of slippery floors is also alleviated by an ESD flooring mat.

Bear in mind that not all ESD matting is tested to the same level.  We recommend checking to make sure the mats you are buying are properly assessed to ensure you are getting the protection you need, and ideally, include ISO certification for your company’s protection.

We would love to be your full service, seamless ESD solution provider.  Contact us today for more information.

05 Apr

The Truth About 11 Myths of Electrostatic Discharge: Part 2

11 Myths of Electrostatic Discharge

Last week we shared with you Part 1 of The Truth About 11 Myths of Electrostatic Discharge; here’s Part 2…

Myth #6 – An ESD bag is all the protection I need.

There is a somewhat popular belief that you can use the ESD shielding bag that your circuit board or sensitive electronics was shipped in as adequate “matting” when you are working. This could not be more false.

Regardless of which ESD shielding bag you receive or purchase, it ONLY provides ESD protection while the item in entirely enclosed inside a sealed bag. Outside of the bag, it can actually increase the chances that you will generate an ESD event, because the bag is designed to “push” a charge away from the contents of the bag – right into your electronics.

Myth #7 – Grounded metal offers a safe haven from ESD.

In fact, conductive materials – like metals – are not safe surfaces for sensitive electronic components that could be subject to an electrostatic charge, even if they are grounded. In fact, the charge dissipation is so fast, the resistance to ground has almost zero impact.

The point of grounding is to get everything at the same potential energy level so that current from an ESD can’t flow where it shouldn’t.  Using metal, even grounded metal, voids this effort.

The next three myths are similar in nature…

Myth #8 – Circuit boards without complementary metal oxide semi-conductor (CMOS) are safe.

On its face, this seems obvious, as it is hard to find a circuit board without some CMOS components. However, ALL circuit boards are susceptible to electrostatic discharges and the damage they can cause.

Myth #9 – A printed wiring board (PWB) permanently protects a circuit board.

Just because a component is inserted into a PWB, that does not protect it from potential ESD damage. It does decrease the likelihood that fatal loss will occur, as the voltage the entire board can sustain is increased.

But this is by no means a guarantee of safety. All proper precautions must be taken when handling sensitive electronics.

Myth #10 – Once products are mounted on circuit boards, ESD mishaps cannot occur.

This is similar to the above myth.  But unlike PWB boards, unprinted boards can actually leave sensitive components even more vulnerable because there is less resistance to slow the electrostatic discharge down.

 Myth #11 – Small companies cannot afford proper ESD protection.

On the contrary, small companies cannot afford not to have suitable ESD protocols and tools. The risk of damage and the costs associated with it are just too excessive not to invest in the proper implementation of an ESD protected workstation – even a portable one, if need be.

We recommend at a minimum, personal grounding wrist straps, dissipative ESD matting and grounding cables.

We would love to be your full service, seamless ESD solution provider, no matter what your size or budget.  Contact us today for more information.

29 Mar

The Truth About 11 Myths of Electrostatic Discharge

11 Myths of Electrostatic Discharge

Would it surprise you to know that a good portion of our modern world would be unable to function without the help of electrostatic discharges (ESD’s)?

No one seems to know quite how it happened, but in 1984, Scott M. Kunen applied for a patent for a “touch controlled switch” – a device he had developed to allow lamps to be turned on or off with the touch of a human hand.

Little did he know that less than a decade later, computer companies would begin adapting his technology, covering it with a variety of static controlling sheaths, creating the capacitive-touch screen, the basis for all modern smart phones, tablets and touch screen laptops.

So, here’s the truth about the myths of electrostatic discharge.

Myths About Electrostatic Discharge

Myth #1 – All ESD is bad.

The truth is, most people use ESD everyday to make phone calls, send text messages, and create emails. The touch controlled switch and the capacitive-touch screen both operate by transmitting small ESD charges from your body into the devices to signal turning a light on, or the letters or numbers desired.

Myth #2 – Electrostatic Discharge is a modern day problem.

Believe it or not, ESD and necessary precautions to prevent it are older than the United States. In the 1400’s, forts and places that stored or produced explosives, gun powder, and even sawdust could fall prey to horrible accidents, so early forms of ESD control were developed and implemented.

Except, of course, when the good guys needed to blow up the bad guys’ stash in a Hollywood movie.

Myth #3 – ESD problems are really quite rare.

In truth, because of the extremely low levels of ESD required to damage small electronics and the fact that damage isn’t always visible or catastrophic, we may never know just how prevalent ESD events are.

Visible static sparks generated by our bodies have to build up between 500-1000 volts, and it takes twice that charge to be felt.  Most sensitive electronics can be damaged by 100 volts or less.

And even if the device continues to function as expected, its life expectancy may be severely diminished and in some cases, latent failure can occur, causing even more damage.

Since we cannot fully prevent or even detect an ESD event, all precautions should be taken to avoid an accidental discharge.

Myth #4 – Discharging fingers and tools before using them is sufficient precaution against ESD mishaps.

Unless you are able to hold your body AND tool perfectly still, you can (and often do) build up a replacement charge that can be discharged into your electronics.

As mentioned above, because of the negligible amount of charge necessary to potentially damage the sensitive parts, you have no way of knowing you are not transmitting a dangerous ESD. It’s better to be safe than sorry.

We recommend that you always use personal wrist straps, dissipative mats and grounding cords for the best chance of circumventing ESD problems.

Myth #5 – You have to touch an item to transmit an ESD to it.

As mentioned above, it takes very little for the human body to build up an electrostatic discharge. Just the movement of lifting your foot off the ground can generate up to 1,500 volts.

And that generated charge can easily leap from your hand to your unprotected device inches away.

Stay tuned next week for Part 2 of The Truth About 11 Myths of Electrostatic Discharge…

We would love to be your full service, seamless ESD solution provider, no matter what your size or budget.  Contact us today for more information.

03 Mar

Selecting the Proper Shielding Bags

Choosing the Right Shielding Bag

In Michio Kaku’s book, Physics of the Future, he notes that today’s smart phones have more computing power than NASA had in the 60’s when they were plotting and launching the moon landings.

The latest SONY Playstation can outperform the supercomputers the US Government used in 1997 – 14 years after the movie WarGames.

In 1965, Gordon Moore, one of the founders of Intel, observed what became known as “Moore’s law.” He postulated that computers would progressively become more dense while at the same time increasing their processing speed.

This can be both good and bad news for computers. The bad news being that every time a component gets 10% smaller, it gets 10x more sensitive to electrical shocks, even those coming from simple static electricity. Static in your workplace can be dangerous and expensive if you’re not properly prepared.

One important weapon in your arsenal for defense against Electrostatic Discharge (ESD) is shielding bags.  Which bag is best? They all have their pros and cons to consider.

Pink Poly Bags

The earliest defense against ESD was created in the 1960’s.  Dissipative Poly Bags, usually referred to as Pink Poly bags because of their unique color – introduced as an easy way to differentiate their static control abilities from standard plastic bags – are coated with a chemical that resists static.

Unfortunately, Pink Poly bags have no shielding capability. An ESD of any significance will travel through the bag and potentially damage components inside. They are best utilized today to package support or processing materials that do not themselves need shielding.

The antistatic properties of the bags help to protect sensitive components near the bags. This makes them a helpful solution as opposed to normal plastic bags, but you should always have a grounding system in place – mats and personal wrist straps at a minimum.

Black Conductive Poly Bags

Black Poly Bags are obviously a step up from their Pink predecessors. But in this case, their advantages are also their biggest flaw. Like the Pink Poly’s, the Black bags are antistatic, with the added benefit of some conductivity, designed to help protect its contents from ESD’s.

The problem lies in how quickly the bags dissipate the electrical charge. The rapid discharge of the ESD can actually generate a spark between the person or object creating the charge, and because the bags lack an additional insulation layer inside the bag, that charge can easily penetrate it.

Plus, there’s the added complication of the bag’s color. The conductive carbon leaves the bag opaque, requiring the contents to be removed to be seen, leaving the potential for damage.

The biggest benefit of the Black Poly’s was some shielding at a lower price point.  But in recent years, shielding bags have become much more affordable, and reputable vendors have effectively eliminated them from their inventory.

Shielding Bags

Shielding bags combine the antistatic and dissipative qualities of the poly bags with metal shielding and a polyester insulator (or dielectric) layer. Where Pink Poly’s stop about 10% and Black Poly’s 30%, Shielding Bags stop 97% of electrostatic pulses.

Shielding bags are classified in two ways:

Buried Metal (Metal-In)

Buried Metal bags consist of a dissipative poly layer, glued or laminated on top of a metallized polyester – usually aluminum, but sometimes nickel or copper – laid over an additional dielectric polyester layer.

The metal between two layers of plastic offers better protection than the alternative.

Surface Metal (Metal Out)

In Surface Metal bags, the layers are ordered differently, with the poly and the dielectric polyester glued together, then coated with a nickel sprayed with an abrasion resistance coating.

Unfortunately, the outside metal coating causes a faster dissipation of electrical charges, resulting in sparking issues similar to that of the Black Poly Bags, although not as dangerous.

Moisture Barrier Bags

For long term storage or moisture sensitive items, Moisture Barrier bags provide the ultimate protection. These bags are similar to, but stronger than normal shielding bags and provide an additional protection with a moisture vapor barrier.

There are two types of Moisture Barrier bags: Foil and Tyvek (utilizing the DuPont material) or Heavy Metallization.  Both provide similar levels of protection, the difference primarily being the higher cost of the Tyvek structured bags.

Static protective bags should always be implemented as part of a more comprehensive static control environment, which should always include proper grounding tools.  And while expenditures are always a factor, consider the insignificant price of proper protective measures when compared to the cost of replacing the delicate components inside the package.

Contact us today for more information; we would love to be your full service, seamless ESD solution provider.

25 Feb

What is Ionization & Can it be Prevented?

What is Ionization and Can it Be Prevented?

In the late 1930’s, Walter Jaeger, a physicist from Switzerland was trying to develop a portable sensor for poison gas. He theorized that gas entering the sensor would bind to ionized air molecules and thereby alter an electric current in a circuit in the instrument. Unfortunately it didn’t work – until he lit up a cigarette.

The smoke particles from Jaeger’s cigarette “sparked” a change in current of the ionized particles and the process would be later adapted to the early version of smoke detectors used in most homes in the 1970’s.

What is Ionization?

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons. Ionization can happen as atoms or molecules pass through gases, liquids and sometimes solids.

For the purposes of our discussion, we’re primarily going to be talking about ionization through gas – a specific gas – our atmosphere.

As mentioned, ionization can be positive or negative. Because of the large quantities of air that we encounter in an average building, generally negatively and positively charged ions balance each other out. This is not always the case, however.

Sometimes ions on either side of the spectrum can build up, especially in an environment filled with recycled air. In fact, in some cases, there is a secondary ionization, where the electrons resulting from the passage of charged particles leads to further ionization.

In a previous article, we talked about the various elements of creating an Electrostatic Protected Area or EPA. There are some instances where the addition of an ionizer or an ionizer blower would supplement the protection afforded by a standard EPA.

Ionizer Blowers

Ionizer blowers create a dense and well-balanced ionization current that can help neutralize the air in an EPA workspace. A typical blower uses AC technology to continuously produce a balanced output of positive and negative air ions.

In addition, ionizer blowers come with many options – including task lights, AC and variable speed fans – that will complement the workspace at the same time the ionizer is easily integrated into the EPA workspace.

For smaller, precise jobs, you can even invest in a handheld ionizing air gun.

But, while ionization is good ESD practice in controlling necessary non-grounded static charge generators, they should never be considered replacements for the essential ESD protections – personal ESD wrist straps, ESD control mats and grounding cords.

Contact us today for more information; we would love to be your full service, seamless ESD solution provider.

19 Feb

Faraday Cages? The Surprising Facts

Faraday Cages

After 10 years, the science fiction show The X-Files recently returned to television. In the very first new episode, there is a scene where scientists are studying apparent alien technology, all the while protected from potential harm because the technology is housed in a Faraday cage.

For most people, Faraday cages seem like the stuff of science fiction – boxes built to protect folks with overactive imaginations who fear the world will end with a sudden electromagnetic pulse or EMP.  But what if I told you that most people benefit from at least one Faraday cage almost every day?

The first Faraday cage was built back in the 1830’s, by Michael Faraday, hence the name.  Faraday was an experimental physicist who worked primarily studying electromagnetism and electrochemistry.

Rumor has it that Albert Einstein had a photo of Faraday that he kept on the wall of his study, right next to his picture of Isaac Newton.

One day Faraday noted that during one of his experiments, excess energy from a charged conductor only rested on the exterior of a container, for some reason not penetrating through the container to ground as electricity typically does.

He set about constructing a box to prove his theory that the inside was somehow shielded from the electrical charge.

He built a room, entirely lined with metal foil and subjected it to high powered electrostatic discharges, simulating lightning.  But the interior of the room showed no gain in electricity.

The shielding had forced the negative charges to the outside and the positive charges to the inside, essentially canceling out the electrical current before it could affect anything within the room.

Later, he added a grounding rod and verified that the charge canceled itself out as it traveled around and into the ground.

Today, the principles that Faraday discovered almost 200 years ago are used all across the world to protect people from stray electromagnetic charges.  Ever wonder why your cell phone drops calls when you’re in an elevator?  It’s a semi-enclosed Faraday cage.

The MRI room in medical facilities, USB cables, coaxial cables (the ones you used to get cable TV from), even cars and airplanes use Faraday shielding to help protect their precious cargo.

And if you want to see one up close and personal, take a look at your microwave.  The metal lines in the glass complete the Faraday cage that protects us from electrical discharge and the radiation used to cook your food.

On a smaller scale, metalized static shielding bags protect small electronic components and circuit boards from the much smaller personal EMP’s our bodies generate, which could cause serious damage to these components. Properly sealed ESD boxes and totes, as well as conductive bins use the same principles to protect larger or larger quantities of components.

Of course, while Faraday cages can be ungrounded and even nested to enhance protection, we always recommend taking the proper grounding procedures to protect yourself and your circuitry.

So remember, Faraday cages are not just for “Doomsday Preppers” and science fiction story tropes.  They are at work every day to make our world a safer place.

Contact us today for more information; we would love to be your full service, seamless ESD solution provider.

12 Feb

ESD: Grounding, Isolation & Prevention

The Pilllars of ESD Protection

We’ve all had it happen. We’re opening our car door on a cold day, or we’ve just shuffled in our socks to the door and the moment we reach out, pop! A small snap of static electricity reminds us that we’re alive.

Think back to when you were a kid – your dad or uncle perhaps, showed you the power of static electricity by rubbing a balloon on your head and sticking it to the wall or causing your hair to rise up of its own accord. These tricks with static electricity are great for a chuckle or two. When you’re rubbing the balloon or your socks on the floor, it creates an imbalance of electrons, and that potential energy rests on your body or the surface of the balloon, waiting to discharge. Eventually it does and this sudden restoring of the electrons to their neutral state is called an electrostatic discharge or ESD.

That little tiny jolt of static electricity seems small but is really 3,000 volts – for humans, it’s the amperage that gets you. Unfortunately, for small electronics: circuit boards, semiconductors or even simple devices around the home, much smaller static discharges – ones too light to ever be sensed by our skin – can cause minor errors, or even completely destroy a device’s usefulness. In this situation, ESD is no laughing matter.

In a business—especially one that manufactures or handles a lot of electronics, but even in a typical office environment—this kind of damage can get expensive quickly.

So today, we’re going to talk about the three pillars of controlling ESD: Grounding, Isolation and Prevention.

Grounding

If you’ve worked with small electronics much at all, you’re probably aware that there are certain things you should do to prevent damage to that circuitry. You’re probably familiar with the third prong on many electrical cords. Just like the grounding plug diminishes the risk of you being electrocuted, grounding yourself and your work area keeps your circuit boards and electrical components safe by discharging any built up static electricity.

At a bare minimum, utilizing a grounding wrist band is extremely helpful. Many sellers include disposable bands when they ship electronic components, but we highly recommend owning and utilizing your own personal metal ground wrist strap that connects directly to your work surface with a personal ground cord. Always make sure the wrist strap is snug and is touching the skin to allow the charge to dissipate.

Isolation

Static charges cannot penetrate containers that are made of conductive materials or have a conductive layer. That’s why electronic components usually arrive in metallized shielding bags or a conductive tote box. Don’t forget you must ground them before opening. And don’t set these components just anywhere. What many people fail to realize is that simple items that can be found on any normal work surface – even an ESD mat – can also cause unnecessary static buildup that could lead to a fatal discharge.

Transparent tape, plastic sandwich bags, water bottles, Styrofoam coffee cups, even paperwork or blueprints can hold a static charge just waiting to wreak havoc on unsuspecting components. And even if you are properly grounded, holding the components too close to your clothing can also result in an ESD.

Prevention

Always take proper precautions when working on electronic components. Follow all of the tips above, and if you’re going to be working on several components or multiple projects, we recommend investing in some ESD bench and table matting for your work surface. It integrates well with a personal ground cord and wrist band and is the best solution for ESD prevention. A few dollars spent here as well as on ESD protective containers can mean plenty of money saved on ruined components as well as lost time while waiting for replacements.

Following these simple suggestions can mean a much safer environment for both you and your electronic components – and you can leave the static charge at home for parlor tricks.

Contact us today for more information;  we would love to be your full service, seamless ESD solution provider.

31 Aug

Common Sources of ESD Damage You May Have Overlooked

Common Sources of ESD Damage

As we’ve talked about previously, often the sources of static electricity go completely unnoticed. This is because we humans can’t even detect a static charge until it gets up to about 3,000 volts. The problem is that sensitive electronics can be damaged by a charge down in the 100-volt range.

If you’re in the business of manufacturing printed circuit boards or other electronics, you already know how serious a problem electrostatic discharge in the work environment can be. But for the rest of us, we may not recognize just how big of a problem ESD can be, and how much it is affecting our critical devices.

Once you become aware, then you’ll want to start addressing the problem by setting up a static-free zone, or an ESD protected area (EPA).

One of the first and biggest areas that you’ll probably begin to address in more critical environments is the flooring itself. Putting in one of the many types of ESD floors will help carry static charges away to ground right through the floor, rather than allowing it to end up damaging your sensitive equipment.

Another method of controlling ESD involves using specially designed ESD shoes that will allow static charges to dissipate.

Using ESD flooring and ESD shoes addresses a major source of static discharge buildup.

But where else do static charges come from?

Believe it or not, the typical work environment is loaded with sources of static electricity. Here are some examples you may not have thought about:

  • a typical “scotch tape” dispenser:  the tape itself builds up a static charge coming off the roll (which can be up to a few thousand volts!)and the dispenser is usually made up of insulating materials that can build up a charge
  • plastic baggies (for components) can have a few hundred to over 1,000 volts of static charge built up on them with simple handling.
  • plastic water bottles (or any plastic bottle containing liquid) can build up thousands of static volts of electricity
  • any other products made out of insulating, rather than conductive materials (plastic cups, bins, organizers, etc.)

As you can see, often the sources of static electricity are so close at hand, and so seemingly benign, that they’re very easy to miss.

What Can You Do About It?

Bringing static electricity under control at a given workstation can be accomplished using a few simple tools:

  • ESD work mats will carry the charge away from any conductive materials you set on them
  • ESD grounding straps or wrist straps allow the wearer to stay grounded at all times, preventing the buildup of a static charge on the human body
  • The use of monitors and meters will allow for quick and easy measurement of static buildup, which will help identify and eliminate sources of ESD before they become a problem

Need help setting up your ESD protected areas? Give us a call today, and one of our ESD control experts will be happy to provide all the help you may need!

07 Jul

Demonstrating CDM Discharge using Common Hand Tools

Q:

What is the significance of the time to the charge generation in tribocharging?

Why is it that in tribocharging, there is a big charge produce in short period of time while small charge will be generated at long time? ( at the same force)

(I took the liberty here to respond to the question and go a bit further and look at CDM Testing as described in a recent issue of Conformity.)

A: First a little background about charge as it relates to ESD (ElectroStatic Discharge).

Triboelectric charge is merely the contact and separation of materials.  “It involves the transfer of electrons between materials.”  Which materials lose electrons and which gain them depends on the materials.

Static electricity can be measured in coulombs, and related to voltage potential via the equation: q=CV.  q = charge in coulombs, C = Capacitance, V = Voltage

The industry typically uses electrostatic potential and thus uses voltage to look at this energy form.  Voltage is merely charge potential with respect to a ground point or reference and measured in volts (v).

Insulators or materials with high resistance restricts or prevents flow of electrons across (surface) or through (volume) it’s material.

Conductors or materials with low resistance easily allows the flow of electrons across it (surface) or through (volume)  it’s material.

Insulators and isolated conductors can tribocharge to high voltages and will remain for a long time… so long as energy is not transferred via induction (isolated conductors) by bringing other objects into it’s vicinity and grounding the other object, by grounding the isolated conductor, or by balanced ionization (isolated conductors or insulators).

When isolated conductors are grounded, they (becoming grounded conductors) will enable electrons to flow easily to ground and the charge upon it will become neutralized and reduced to near zero.

Insulators cannot be grounded.  They can induce charge to isolated conductors and can cause electrical overstress/ESD events to isolated conductors at the time they are grounded via the charge field and do not need to contact the isolated conductors in order to do so.

Here’s another way to say that; “CDM (Charged Device Model) charging can produce two separate discharge events.  Here’s how it works.  If you ground a conductor (the conductive blade of a screwdriver for example) while it is in the presence of any item carrying an electrostatic field ( a charged piece of plastic or clothing), the conductor will acquire an electrostatic charge that may be sufficient to cause damage when discharged.”

Human Body Model, as is described in ANSI/ESD S20.20-2007… and the ESD control thereof, is concerned with limiting the voltage in the EPA for the protection of ESDS devices (ESD sensitive devices) to 100 volts and a discharge to within that level in less than 0.3 seconds for ESD Technical Elements (some quicker) at minimum.

I need to know what specifically are you interested in; the HBM, MM (Machine Model), or CDM (Charged Device Model)?  Keep in mind, that “volt per volt, MM discharge is an order magnitude more powerful than HBM discharge because the resistance of human body has been removed from the equation.”

In the article in Conformity, “Demonstrating CDM Discharge Using Common Hand Tools” provided by the ESDA, they state; “The damage threat from hand tools is CDM charging of the hand tool, accompanied by MM discharge to the component or device.”

Source: Conformity : ESD Open Forum April 2009 pg 20.

The following pics depict the testing I did in my lab in accordance with what I’d learned from a recent Conformity article from the ESD Open Forum entitled Demonstrating CDM Discharge using Common Hand Tools.  It involves charge, not by contact, but by induction;

1-non-esd-screwdriver2

1-non-esd-screwdriver2

2-shockstop-treated-screw-driver2

2-shockstop-treated-screw-driver2

3-gz-shock-stop-sample1

3-gz-shock-stop-sample1

4-charging-dp-with-silk1

4-charging-dp-with-silk1

5-zeroing-field-meter1

5-zeroing-field-meter1

6-donning-wrist-strap1

6-donning-wrist-strap1

7-confirm-blade-is-at-zero-on-non-esd-sd4

7-confirm-blade-is-at-zero-on-non-esd-sd4

8-touching-blade-for-cdm-charge2

8-touching-blade-for-cdm-charge2

9-cdm-charge-potential-measurement1

9-cdm-charge-potential-measurement1

10-zeroing-shock-stop-treated-sd-blade4

10-zeroing-shock-stop-treated-sd-blade4

11-confirm-zero-volts-on-shock-stop-treated-sd1

11-confirm-zero-volts-on-shock-stop-treated-sd1

12-recharging-dp-with-silk1

12-recharging-dp-with-silk1

13-touching-blade-on-esd-treated-sd-for-cdm-charge1

13-touching-blade-on-esd-treated-sd-for-cdm-charge1

14-cdm-measurement-for-esd-treated-sd1

14-cdm-measurement-for-esd-treated-sd1

15-rechecking-cdm-on-non-esd-sd1

15-rechecking-cdm-on-non-esd-sd1

16-remeasuring-cdm-on-non-esd-sd1

16-remeasuring-cdm-on-non-esd-sd1

05 Dec

ESD Warning Signs/Labels and which one to use

Q: What is the difference between the symbols used in ESD warning signs / labels: yellow hand w/ black background; black hand w/ yellow background; attention; triange/hand with arch; warning; etc. and how do you decide which one to use?

A: As per ANSI/ESD S8.1-1993, there are two types of ESD awareness symbols identified.

The ESD Susceptibility Symbol:

ESD Susceptibility Symbol

ESD Susceptibility Symbol

  • Consists of the Triangle, the reaching hand with slash through it.
  • This means ESD sensitive devices or assemblies are present.
  • DO NOT TOUCH or Handle Properly.
  • If the device sensitivity is known, it can be added to the label.

ESD Protective Symbol

ESD Protective Symbol

ESD Protective Symbol

  • Consists of the Triangle, the reaching hand and an Arc around the Triangle.
  • This indicates ESD Protective Material such as chairs, mats, and wrist straps.

Another common ESD symbol for safety would be;

Common Point Ground

  • Common Point Ground

    Common Point Ground

  • This symbol looks like a bull’s eye and may be black and yellow.
  • This represents connecting ESD control materials or equipment to electrical or 3rd wire ground.
  • You can consult the standard S6.1 from the ESD Association for more on this.

On our website we have various ESD Labels, ESD Warning Signs and ESD Control Area Signs and Posters for your EPA (ESD Protected Area). The labels can be used on bags, boxes, and totes. The Caution Label symbol is still popular and is represented by a circle with three arrows entering into it.

The Attention Labels utilize the ESD Susceptibility Symbol and are represented by four different types:

  1. Small ESD attention labels- Destructible type or tamper-evident and is good for closing small bags containing ESDS components
  2. MIL 129 Label – Also destructible type or tamper-evident label
  3. ESD Attention Label – a label that also allows writing space
  4. Dry Packaging & ESD Susceptible Label

ESD Control Area Signs and Posters.

ESD Control Area Poster

ESD Control Area Poster

Black on Yellow or Yellow on Black print is just used for ease of reading and the MIL 129 label is the only one that I know that uses a black hand in a yellow triangle instead of a yellow hand in a black triangle.